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Abstract

Instance segmentation of single cells from microscopy
images is critical to quantitative analysis of their spatial and
morphological features for many important biomedical appli-
cations, such as disease diagnosis and drug screening. How-
ever, the high densities, tight contacts, and weak boundaries
of the cells pose substantial technical challenges. To over-
come these challenges, we have developed a new instance
segmentation model, which we refer to as single-cell Trans-
former segmenter (SCTS). It utilizes a Swin Transformer
as its backbone, combining the global modeling capabili-
ties of a Transformer and the local modeling capabilities
of a convolutional neural network (CNN) to ensure model
adaptability to different cell sizes, shapes, and textures. It
also embeds a three-class (background, cell interior, and
cell boundary) semantic segmentation branch to classify pix-
els and to provide semantic features for downstream tasks.
The prediction of boundary semantics improves boundary
awareness, and the differentiation between foreground and
background semantics improves segmentation integrity in
regions with weak signals. To reduce the need for annotated
training data, we have developed an augmentation strategy
that randomly fills instances of single cells into open spaces
of training images. Experiments show that our model out-
performs several state-of-the-art models on the LIVECell
dataset and an in-house dataset. The code and dataset of
this work are openly accessible at https://github.com/cbmi-
group/SCTS.

1. Introduction
Extracting individual cells from their microscopy images

through instance segmentation is critical to analysis of bi-
ological and medical samples at the single-cell level for
important applications such as disease diagnosis and drug
screening [2, 26, 34]. In instance segmentation, pixels not
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only must be classified into different semantic classes but
also must be grouped into individual instances. This is a
challenging task because cells in tissues or cultures often
have high densities, tight contacts, and weak boundaries.

Early models such as the U-Net [31] achieve excellent
performance in semantic segmentation of cell images but
cannot resolve individual cells. To address this problem, a
variety of instance segmentation methods [33, 4, 36] have
been developed by combining semantic segmentation with
different post-processing strategies. These methods are in-
tuitive and show good adaptability to cells of different sizes
and shapes, but they are not fully end-to-end for training.
Their performance is also limited by their post-processing
operations. They cannot handle overlapping cells because
they can only assign one instance label to each pixel.

Mask R-CNN [15] is a two-stage instance segmentation
network that first generates a series of proposals using the
Region Proposal Network (RPN) [29] and then performs
classification and coordinate regression on the proposals.
It can handle segmentation in the presence of overlap be-
tween image objects. However, as shown in Figure 1, it
tends to produce incorrect boundary predictions in regions
of tight cell contacts and incomplete segmentation masks in
regions of weak signals. Hybrid Task Cascade (HTC) [6]
is an improvement over Mask R-CNN. It introduces a se-
mantic segmentation branch to distinguish real foreground
from cluttered background, which helps to recover missing
detections in regions with weak signals but brings side ef-
fects such as merging different cells in tight contacts into
one instance.

Overall, convolutional neural networks (CNNs) such as
the U-Net and the Mask R-CNN are commonly used in vi-
sion tasks and have achieved impressive performance. How-
ever, they have difficulty capturing long-range dependencies
because they are limited by the size of their convolution
kernels. This limitation in turn makes it difficult for down-
stream tasks to adapt to changes in cell shape, size, and
texture. The Transformer architecture provides an effec-
tive solution to overcome these shortcomings [24]. In this
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Figure 1: Comparison of performance of Mask R-CNN versus the SCTS model developed in this study. (a) Raw images. (b)
Ground truth. (c) Predictions by Mask R-CNN. (d) Predictions by SCTS. Ovals highlight predictions in regions with weak
signals. White rectangular boxes highlight boundary predictions under tight contacts and diffusive boundaries of cells.

study, inspired by the aforementioned models, we propose
a Transformer-based semantic-aware architecture for fully
end-to-end single-cell instance segmentation. It addresses
several key issues in instance segmentation of single cells.
First, cells show large variations in their sizes and shapes. It
is difficult for CNNs to handle these variations. We introduce
the Swin Transformer [24] as the backbone network, which
can effectively capture global information and long-distance
dependencies and can better adapt to changes in cell shape
and size. Second, in cases with high cell densities, existing
methods have difficulty identifying cell boundaries. We em-
bed a three-class semantic branch to distinguish background,
cell boundary, and cell interior to better differentiate cells
in tight contacts. Third, manual annotation of microscopy
images remains laborious and time-consuming. We propose
a new strategy to augment small-scale datasets. In summary,
we make the following research contributions:

• We have developed a novel model for instance seg-
mentation of single cells. To ensure its adaptability to
variations in cell size, shape, and texture, it adopts Swin
Transformer as the backbone network to model global
as well as local features.

• We propose to embed a three-class semantic branch to
the Transformer backbone to effectively capture seman-
tic information. The prediction of boundary semantics
improves the discrimination of cell boundaries, and
the prediction of foreground and background semantics
improves segmentation integrity in regions with weak

signals.

• We have developed a new data augmentation strategy
named space-filling, which effectively and substantially
increases training images by filling cell instances ran-
domly into their object-free background regions.

2. Related Work
2.1. Instance Segmentation of Single Cells

Semantic segmentation of single-channel microscopy im-
ages classifies their pixels into two semantic classes: the
foreground and the background. Fully Convolutional Net-
works (FCN) [25] is one of the early semantic segmenta-
tion models. It uses a fully convolutional neural network
that greatly improves the accuracy of semantic segmenta-
tion. But its segmentation results often have poor details
because contextual information is not considered. Based
on FCN, Ronneberger and colleagues propose the U-Net,
which uses a U-shaped encoder-decoder architecture that
combines low-resolution and high-resolution information
through skip connections. U-Net has achieved good segmen-
tation performance on medical images and has become a
widely adopted baseline model. Still, its architecture is not
designed to handle instance segmentation of single cells.

Several studies have proposed to extend semantic seg-
mentation to instance segmentation by incorporating post-
processing operations [1, 4, 14, 30, 33, 36]. For example,
Greenwald and colleagues propose a method named Mes-
mer [14] that divides instance segmentation into two pixel-
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level prediction tasks. The first task predicts whether a pixel
is inside a cell, at the cell boundary, or part of the image
background. The second task predicts the distance of each
pixel inside the cell to the cell centroid. Finally, a watershed
segmentation algorithm is performed on the predicted results
to separate different cell instances. These methods are in-
tuitive and interpretative, but their segmentation accuracy
is limited by their post-processing strategies. They cannot
handle overlapping cells.

Benefitting from detection models such as R-CNN [13]
and its variants [3, 12, 29], YOLO [28], and SSD [23], an-
other common strategy for instance segmentation is a two-
stage approach combining detection and segmentation. Ex-
amples of this strategy include FCIS [19], Mask R-CNN,
MaskLab [8],Mask Scoring RCNN [17], HTC [6], and
PointRend [18]. These methods first extract ROIs using
convolutional layers and then perform segmentation and
classification on each ROI. They can handle overlapping ob-
jects but are less effective for segmentation at tight contacts,
diffusive boundaries, and regions of weak signals, which are
common in cell images.

Some studies convert pixel-level classification tasks into
pixel-level regression tasks to achieve instance segmenta-
tion [27, 32, 35, 38, 39, 40]. For example, the Stardist
method [32] transforms the instance segmentation task into
a prediction problem with a fixed number of points on each
image object contour. For each pixel, the Stardist predicts
its object class probability and star-convex polygons param-
eterized by the radial distances to capture cell instances.
MultiStar [35] and SplineDist [27] are further extensions of
the Stardist method. However, due to limitations of their
model representation, these methods have poor performance
on non-convex objects.

2.2. Vision Transformer

Despite the success of CNN-based cell instance segmenta-
tion methods, it is difficult for CNNs to capture long-distance
dependencies and global contextual information due to the
limitations of convolutional kernels. Recently, methods
based on Transformer have achieved excellent performance
in many vision tasks such as classification, detection, and
segmentation. DEtection Transformer (DETR) [5] is the
first Transformer-based end-to-end model for object detec-
tion. It treats the object detection task as a set prediction
problem, removing many hand-crafted operations such as
non-maximum suppression or anchor generation. It achieves
comparable accuracy and running time as Faster R-CNN.
Vision Transformer (ViT) [10] applies pure Transformer on
sequences of image patches and achieves promising results
in image classification tasks. Swin Transformer solves the
problem of high resolution and large-scale variation of im-
ages faced in migrating from texts to images. It extends the
Transformer to pixel-level dense prediction tasks by building

hierarchical features. Its excellent performance on multi-
ple vision tasks demonstrates its potential to be a general
backbone network for vision tasks. In the instance segmen-
tation model developed in this study, we employ the Swin
Transformer as the backbone network to capture long-range
dependencies and global contextual information, which is
critical for the model to adapt to different cell sizes, shapes,
and textures.

3. Method
3.1. Architecture Overview

Our instance segmentation model is an improvement over
Mask R-CNN, a two-stage instance segmentation model. In
the first stage, Mask R-CNN generates a series of candidate
object bounding boxes by its RPN. In the second stage, Mask
R-CNN extracts ROIs from each candidate box by RoIAlign
and then performs classification and bounding box regression
on the ROIs by its detection head and binary segmentation
on ROIs by its segmentation head (Figure 2d).

Figure 2 gives an overview of our proposed model ar-
chitecture. Compared to Mask R-CNN, our model differs
in these key aspects: (a) It employs a Swin Transformer
instead of a ResNet [16] as the backbone network to ensure
model adaptability to cell size, shape, and texture (Figure 2a,
Section 3.3). (b) It embeds a semantic segmentation branch
to distinguish between background, cell interior, and cell
boundary to improve boundary perception and foreground
integrity for downstream tasks (Figure 2c, Section 3.4). (c)
Before each batch, it augments training images online by ran-
domized filling of instances of single cells into open spaces
of training images using the space-filling augmentation strat-
egy described below (Figure 2e, Section 3.2).

3.2. Space-Filling Augmentation Strategy

In practice, labeled biomedical images often are limited,
and the cost of labeling is high. To fully utilize available
annotated training data and improve the diversity of training
images, we design a new data augmentation strategy that
we refer to as Space-Filling. The workflow is depicted in
Figure 3, which consists of two steps: database construction
and space-filling. In the database construction step, using
the bounding box annotation and segmentation annotation
of the instances, we crop out images of cell instance regions,
setting background pixel values to zero to avoid instances
from overlapping with each other. Finally, we collect all
the instance images. In the space-filling step, we first ran-
domly select a specific number of cell instances from the cell
database. We then transform the instances using strategies
such as rotation and random image intensity transformation.
Finally, we superimpose the foreground of individual cell
instances onto the open spaces of training images where the
binary mask intersection of the training image objects and
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Figure 2: Overview of the proposed model. (a) Swin-Tiny backbone network. (b) Feature Pyramid Networks (FPN) [21]. (c)
Three-class semantic segmentation branch. (d) Downstream detection and segmentation tasks. (e) Space-Filling augmentation
strategy and semantic label generation flow. (f) Detailed structure of the Swin Transformer block.

the inserted instance image objects is empty. This augmenta-
tion is carried out online during training, so even for the same
training image, the processing results are different in each
batch, which effectively increases the diversity of training
images and alleviates the need for manual annotation.

Figure 3: Workflow of data augmentation using the space-
filling strategy.

3.3. Swin Transformer Backbone

Swin Transformer contains four versions: Swin-Tiny,
Swin-Small, Swin-Base, and Swin-Large, where each ver-
sion has twice the model size and computational complexity
of the previous one. In this study we use Swin-Tiny. Its
overall architecture is shown in Figure 2a. It contains four
stages, the numbers of Swin Transformer blocks from stage
1 to stage 4 are 2, 2, 6, and 2, respectively. For an input im-
age, Swin-Tiny first divides it into non-overlapping patches
through a patch partition operation. In our implementation,
we set the patch size to 4×4. For an RGB image, the di-
mension of each patch is 4×4×3. Then, Swin-tiny applies
a linear embedding layer on the original features to trans-
form them into an arbitrary dimension. Next, Swin-Tiny
processes the features through several Swin Transformer
blocks and employs a patch merging layer to concatenate
the features of each group of 2×2 neighboring to achieve
downsampling. Stages 2, 3, 4 are constructed in a similar
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process and the outputs of these stages are combined into a
hierarchical representation.
Swin Transformer Block. Figure 2f shows the detailed
structure of the Swin Transformer Block, where MLP de-
notes the multilayer perceptron module, LN denotes the
layernorm module, W-MSA denotes the multi-head self-
attention module, SW-MSA denotes the shifted windows
multi-head self-attention module, f̂ l denotes output features
of the (S)W-MSA module of block l, and f l denotes the
output features of the MLP module for block l. The Swin
Transformer Block can be summarized by the following
group of equations:

f̂ l = W-MSA
(
LN

(
f l−1

))
+ f l−1,

f l = MLP
(

LN
(
f̂ l
))

+ f̂ l,

f̂ l+1 = SW-MSA
(
LN

(
f l
))

+ f l,

f l+1 = MLP
(

LN
(
f̂ l+1

))
+ f̂ l+1. (1)

3.4. Semantic Segmentation Branch

Figure 1 highlight the problems of incomplete segmen-
tation results in regions with weak signals and inaccurate
boundary prediction in regions with tight cell contacts when
using Mask R-CNN for instance segmentation. Inspired
by HTC, we address these problems by designing a seman-
tic segmentation branch with three classes of labels: back-
ground, cell interior, and cell boundary.
Semantic Label Generation. Figure 2e shows the workflow
of semantic label generation. For an input image, we first
perform data augmentation using the space-filling strategy.
We then assign different pixel values to each instance accord-
ing to segmentation annotations to generate a mask. Next,
we downsample the mask to match in size with the shape of
semantic prediction for loss calculation. Finally, we apply
findboundaries function of the skimage library to the mask
to generate three-class semantic labels of cell boundary, cell
interior, and background. Specifically, the semantic class of
cell boundary class is composed of a one-pixel-wide edge.
The semantic class of cell interior consists of foreground pix-
els other than the one-pixel-wide boundary. The remaining
pixels are assigned to the semantic class of background.
Semantic Segmentation Loss. For the semantic segmen-
tation branch, we use the following weighted cross-entropy
loss function:

Loss =
1

N

N∑
n=1

C∑
c=1

wcy
(n)
c log

(
ŷ(n)c

)
, (2)

where N denotes the number of samples, C denotes the
number of semantic classes, and wc denotes the loss weight
of class c. y(n)c is the symbolic function that equals 1 when

the true class of sample n is c and 0 otherwise. ŷ
(n)
c de-

notes the probability that sample n belongs to class c. We
assign different loss weights to different semantic classes
to balance between the classes. In the ablation study, we
explore the effect of different weights of the cell boundary.
See Section 4.6 for details.
Semantic Segmentation Architecture. The network struc-
ture of the semantic segmentation branch is shown in Fig-
ure 2c. The layer-level features of FPN are downsampled
to the same size after 1×1 convolution and element-wise
summation. The features are further extracted by four 3×3
convolutional layers and then divided into two branches.
One branch calculates the cross-entropy loss of predictions
and semantic segmentation labels. The other branch is added
to the subsequent detection and segmentation branches.

Figure 4: Representative samples from the LIVECell and
HEK293T datasets. (a) Examples of images with different
densities in LIVECell datasets. Regions indicated by light
brown arrows are not labeled because of high cell density.
(b) Examples of different cell types in the LIVECell dataset.
From left to right: SKOV3, Huh7, SHSY5Y, BT474. The
white outlines in (a) and (b) are drawn for visualization. (c)
Examples of HEK293T dataset. (d) Annotations correspond-
ing to the images of the HEK293T dataset. The correspond-
ing annotations and images show that the HEK293T dataset
is not uniform in image brightness. There are many regions
with weak signals.

4. Experiments
4.1. Datasets

LIVECell is a large-scale public dataset that consists of 5239
phase-contrast microscopy images with a total of 1,686,352
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cell instances from eight different cell types [11]. For con-
sistency in performance comparison, we partition the dataset
into 3188 training images, 539 validation images, and 1512
test images, same as in [11]. Images in LIVECell have
two notable features. First, they show large variations in
cell density, with images of cells growing from the initial
seeding phase to a fully confluent monolayer (Figure 4a).
In the case of full confluency, a LIVECell image 704×520
in size can contain more than 3000 instances, which makes
it difficult even for human eyes to accurately identify cell
boundaries. Second, cells in the LIVECell dataset show a
wide variety in size and shape(Figure 4b), including small
and round BV-2 cells, large and flat SK-OV-3 cells, and elon-
gated SH-SY5Y cells. The high density and wide variety of
cells pose substantial challenges for the design of algorithms.
HEK293T is a small-scale in-house dataset of HEK293T
cells imaged by confocal microscopy. It is partitioned into
108 training images and 37 test images, with a total of 2012
training instances and 576 test instances. It is characterized
by uneven cell brightness and the presence of some weak
signal regions(Figure 4c-d). We first augment it into 3240
training images by rotation, flipping, blurring, and intensity
transformation before training. During training, the dataset
is further augmented online using the space-filling strategy.

4.2. Performance Evaluation Metrics

We use standard COCO evaluation metrics [22] AP (Av-
erage Precision), which is averaged over Intersection over
Union(IoU) thresholds from 0.5 to 0.95 at an interval of
0.05 [22]. Specifically, APbbox denotes the AP of cell detec-
tion, APsegm denotes the AP of cell instance segmentation,
AP0.5 and AP0.75 denote AP at IoU thresholds of 0.5 and
0.75, respectively.

4.3. Implementation Details

We implement our network model in PyTorch, using a
Swin-Tiny model pre-trained on ImageNet-22K as the back-
bone network. Our model is trained with the AdamW op-
timizer with a learning rate of 0.0001 and a weight decay
of 0.05. For the semantic segmentation branch, we use the
cross-entropy loss function between the prediction and the
ground truth and set the weights for the background, the cell
interior, and the cell boundary to be 1, 1, and 3, respectively,
in the loss function.

For the LIVECell dataset, we follow the same settings
as in [11]. During training, we use a batch size of 16 (dis-
tributed to two per GPU), and set the short sides of images
to (440, 480, 520, 580, 620) so that the network randomly
selects the short side from the sequence and changes the long
side by the same ratio. Given the large amount of annotated
data, space-filling augmentation is not performed on this
dataset. Each model is trained for about 140 epochs.

For the HEK293T dataset, we keep the image resolution

of 1200×1200 and expand the dataset online using space-
filling data augmentation. We train our network for 36
epochs with a batch size of 32.

4.4. Experimental Results on HEK293T Dataset

Table 1 summarizes the performance comparisons of the
proposed model against widely used instance segmentation
models, including Mask R-CNN, Cascade Mask R-CNN,
PointRend [18], MViTv2 [20] and Hybrid Task Cascade,
these results are reproduced based on MMDetection [7].
Without cascading, our approach improves by 2.0% on
APbbox and 1.6% on APsegm over the best-performing
MViTv2 model. Our method has the most significant per-
formance improvement in APsegm at an IoU of 0.75, which
improves 10.4% in APsegm compared to Mask R-CNN with
ResNet-50 backbone, confirming that our model generates
high-quality segmentation results. When using the cascade
strategy, our approach improves by 3.1% on APbbox and
3.6% on APsegm over the best-performing Cascade Mask
R-CNN using ResNeST [41]-50 backbone.

Figure 5a shows the qualitative comparison results of
our model against the competing models. Mask R-CNN,
PointRend and MViTv2 tend to produce missing detection
and incomplete segmentation results in regions with weak
signals due to the absence of semantic information. HTC
fuses the semantic branch of background and foreground so
that the distinction of foreground and background semantics
alleviates the problem of incomplete segmentation in regions
with weak signals. However, this strategy also causes the
model to merge cells in tight contact into one instance pre-
diction. Because our model makes full use of contextual
semantic information and boundary information, it performs
well in regions of weak signals and tight cell contacts.

4.5. Experimental Results on LIVECell Dataset

Table 2 summarizes the performance comparisons on the
LIVECell dataset of our model against the same set of mod-
els tested on the HEK293T dataset. Segmentation results
using Cascade Mask R-CNN are based on the ResNeSt-200-
DCN [9] backbone as in [11], while the other models are
reproduced based on detectron2 [37]. Without cascading, our
approach achieves a gain of 1.1% in APsegm over the best-
performing MViTv2 model. When using the cascade strat-
egy, our model achieves approximately the same APbbox

and a gain of 0.8% in APsegm over the best-performing Cas-
cade Mask R-CNN with ResNeSt-200-DCN backbone but
uses fewer parameters (29M vs. 70M) and lower FLOPs
(4.5G vs. 17.5G).

Figure 5b shows qualitative comparison results of our
model against the competing models. Results in rows 1
and 2 show that for elongated cells, Mask R-CNN, HTC,
and PointRend have difficulty capturing long-distance de-
pendency, while our model and Transformer-based MViTv2

5949



Figure 5: Qualitative results on HEK293T and LIVECell dataset. (a) Qualitative results of our method against the competing
models on the HEK293T dataset. (b) Qualitative results of our method against the competing models on the LIVECell dataset.
MRCNN: Mask R-CNN, GT: GroundTruth. Ovals highlight predictions in regions with weak signals. White rectangular
boxes highlight boundary predictions under tight contacts and diffusive boundaries of cells. Red rectangular boxes highlight
predictions in regions that merge cells in tight contact into one instance.

Method Backbone APbbox APbbox
0.5 APbbox

0.75 APsegm APsegm
0.5 APsegm

0.75

Mask R-CNN ResNet-50 44.7 79.5 47.1 45.3 81.0 47.2
Mask R-CNN ResNeST [41]-50 46.2 80.5 48.0 46.5 81.2 49.4
Mask R-CNN Swin-Tiny 47.1 81.9 51.0 48.3 84.2 51.0
PointRend [18] ResNet-50 46.7 81.1 48.7 46.6 82.1 50.5
MViTv2 [20] MViTv2-Tiny 49.0 84.3 51.3 50.0 85.2 54.0
SCTS Swin-Tiny 51.0 86.2 53.4 51.6 85.9 57.6

Cascade Mask R-CNN ResNet-50 46.9 78.5 50.2 47.0 80.5 51.4
Cascade Mask R-CNN ResNeST-50 48.4 80.8 52.1 48.7 83.5 51.3
Hybrid Task Cascade ResNet-50 48.3 82.0 40.9 48.5 83.1 52.7
Cascade SCTS Swin-Tiny 51.5 85.3 54.1 52.3 86.1 57.4

Table 1: Performance comparison of different instance segmentation models on HEK293T dataset.

model make accurate predictions. This suggests that the
Swin Transformer backbone helps our model to adapt to
different cell shapes and sizes. It can be seen from rows 3
and 4 that our model gives better predictions on cells with
tight contact cells than the competing models. This suggests
that the prediction of boundary semantic labels helps the
model differentiate cells in tight contact.

4.6. Ablation Study

Effects of Network Component. First, we evaluate the con-
tributions of individual network components and the combi-
nation on the HEK293T dataset. The results are summarized
in Table 3, Each component brings performance gain, and
the combination of components performs the best precision.

In Table 4, we also evaluate the contributions of components
on the LIVECell dataset, it obtains similar improvements as
HEK293T dataset. This demonstrates the effectiveness of
the individual components and their combinations.
Effects of Different Semantic Segmentation Cross-
entropy Loss Weights. For weighted cross-entropy loss, we
examined the influence of different semantic class weights
on model performance. Based on SCTS without cascade,
we set weights for the background and the cell interior loss
both at 1 and investigate the performance of cell boundary
loss weight from 1 to 5, respectively (Figure 6a). The best
performance of both APbbox and APsegm is achieved when
the weight of boundary loss at 3. We performed the same
experiment on LIVECell validation set(Table 5), and it ob-
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Method Backbone APbbox APsegm

Mask R-CNN ResNet-50 42.9 44.8
Mask R-CNN ResNeST-50 43.9 45.5
Mask R-CNN Swin-Tiny 45.0 46.2
Pointrend ResNet-50 44.4 44.7
MViTv2 MViTv2-Tiny 45.5 46.5
SCTS Swin-Tiny 45.7 47.6

Cascade Mask R-CNN ResNet-50 45.4 45.6
Cascade Mask R-CNN ResNeST-50 47.1 46.8
Hybrid Task Cascade ResNet-50 45.8 45.8

Cascade Mask R-CNN
ResNeST-200-
DCN [9]

48.5 47.9

Cascade SCTS Swin-Tiny 48.6 48.7

Table 2: Performance comparison of different instance seg-
mentation models on the LIVECell test set.

Swin-T Semantic S-F Cascade APbbox APsegm

- - - - 45.7 46.4
✓ - - - 48.3 49.6
- ✓ - - 47.2 47.7
- - ✓ - 48.2 48.8
- - - ✓ 47.3 47.5
✓ ✓ - - 49.2 50.6
✓ ✓ ✓ - 51.0 51.6
✓ ✓ ✓ ✓ 51.5 52.3

Table 3: Ablation study of effects of network components
on the HEK293T dataset. Swin-T: Swin-Tiny backbone
network, Semantic: semantic branch, S-F: space-filling aug-
mentation. Cascade: network cascade architecture.

Swin-T Semantic Cascade APbbox APsegm

- - - 43.1 45.1
✓ - - 44.7 46.7
✓ ✓ - 45.7 47.6
✓ ✓ ✓ 48.6 48.7

Table 4: Ablation study of effects of network components
on the LIVECell test set.

tains similar results as HEK293T dataset. So we set the loss
weight of the boundary classes to three times the weight of
the other two classes.

W APbbox APsegm

1 46.7 48.3
2 46.7 48.4
3 46.8 48.4
4 46.7 48.2
5 46.7 48.2

Table 5: Effects of boundary semantic class loss weight on
the LIVECell validation set.W:weight of boundary semantic.

(a) (b)

Figure 6: Ablation study on semantic segmentation cross-
entropy loss weight and different numbers of instance in-
sertions on the HEK293T dataset. (a) Effects of semantic
segmentation loss weight. (b) Effects of different numbers
of instance insertions.

Effects of Different Numbers of Instance Insertions Us-
ing the HEK293T dataset, we explore the effect of different
numbers of instances inserted using the space-filling strategy.
We use semantic branching without network cascades and
experiment with 0, 5, 10, 20, 50, and 100 insertions (Fig-
ure 6b). Initially, the performance gradually improves as the
number of insertions increases, and then the performance
degrades, likely because the gap between the distribution of
the training set and the test set widens under the excessive
number of insertions. The best performance of detection and
segmentation is achieved when the number of insertions is
10. In general, we find that the number of insertions should
be set based on the distribution of the training and test sets
for practical applications. Specifically for the HEK293T
dataset, the training and test sets are similarly distributed,
only a small number of insertions are needed.

5. Conclusion

In this study, we have developed SCTS, a novel model
for instance segmentation of single cells using a Swin Trans-
former backbone and three-class semantic feature embed-
ding. We have also developed a new augmentation strategy
named space-filling to improve the diversity of training im-
ages. Experiments show that our model outperforms several
state-of-the-art models on the LIVECell and our in-house
datasets.Our model also has its limitations,and we addresses
these in discussion section in the supplementary materials.
Single-cell segmentation in the case of extremely high cell
densities is one of the directions we will pursue in future
studies.
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