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Abstract

Recent years have witnessed the success of deep learn-
ing on the visual sound separation task. However, exist-
ing works follow similar settings where the training and
testing datasets share the same musical instrument cate-
gories, which to some extent limits the versatility of this
task. In this work, we focus on a more general and chal-
lenging scenario, namely the separation of unknown musi-
cal instruments, where the categories in training and test-
ing phases have no direct overlap with each other. To
tackle this new setting, we propose the “Separation-with-
Consistency” (SeCo) framework, which can accomplish the
separation on unknown categories by exploiting the consis-
tency constraints. Furthermore, to capture richer charac-
teristics of the novel melodies, we devise an online match-
ing strategy, which can bring stable enhancements with no
cost of extra parameters. Experiments demonstrate that
our SeCo framework exhibits strong adaptation ability on
the novel musical categories and outperforms the baseline
methods by a notable margin.

1. Introduction

The objective of visual sound separation is to separate
the mixed audio signals into individual components with the
guidance of visual cues. Deep neural networks can extract
rich semantic information from both visual and auditory
modalities, which significantly promote the development of
the visual sound separation task. Most deep-learning based
approaches, such as [44, 13, 11], adopt the setting where
the training and testing sets share the same musical instru-
ment categories. Despite the success, there still exist some
limitations on such training mode, which confine the sepa-
ration targets to the musical instruments that have appeared
in the training set. The more general setting of visual sound
separation on unknown musical instruments remains an un-
explored problem.

In this work, we undertake the task of visually guided

music separation on unknown classes, that is, the categories
of training and testing sets have no direct overlap. Under
the real scenario, it is challenging to directly identify and
separate the sound of the unfamiliar musical instruments
from the mixed audio signal, even for humans. Thus, it may
be difficult to directly apply the existing frameworks to this
new setting and reasonable priors must be added to enhance
the adaptability of the deep models to the unknown musical
sounds.

To handle this challenging new setting, we propose a
novel ‘Separation with Consistency’ (SeCo) framework,
which exploits the consistency constraints to realize the
visual sound separation on the novel musical instruments.
The system receives two types of consistency supervisions,
namely the inter-modal consistency and the intra-modal
consistency. Firstly, the audio-visual associations in videos
are natural and will not change with different categories.
Therefore, it is critical to strengthen the audio-visual (AV)
correlations during training, instead of simply capturing the
isolated features for the auditory and visual modalities. In
this way, the visual cues can provide better separation guid-
ance even for the categories that have never been seen be-
fore. Specifically, we require that the separated audio sig-
nals should be aligned with the visual components in the
original videos, which is denoted as the inter-modal consis-
tency. Secondly, even though directly identifying unfamil-
iar sounds is not easy for humans, things will become quite
different if some auditory examples are provided. In par-
ticular, human brains can achieve the goal of separating the
novel target sound by perceiving the similarities and dif-
ferences between the mixed sound and the given template
sound. Thus, it is a natural idea to incorporate such a tem-
plate learning mechanism in deep models for the assistance
of visual sound separation on unknown classes. Specifi-
cally, since the sounds from the same type of musical in-
struments normally enjoy similar timbres and tones, the fea-
tures extracted from them should be close in the embedding
space. In this way, the intra-modal consistency expands the
supervision scale from the sample level to the wider cate-
gory level, which can effectively help the deep models adapt
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well to the unknown classes.
For an unfamiliar melody, humans may listen to the

melody over and over again to better capture the charac-
teristics of the musical tone. Similarly, this behavior can
also be applied to our task. We develop an online match-
ing strategy to iteratively refine the predicted mask for each
sample independently so that the potential of the devised
consistency guidance can be further exploited. The online
matching strategy can bring stable improvements without
introducing any extra parameters.

Our contributions can be summarized as followed. (1)
We explore the task of visual music separation under the
scene of unknown musical instruments, which expands the
scope of visual sound separation and makes the task more
versatile. (2) We propose a novel framework, SeCo, to adapt
to this challenging situation. The results show that our ap-
proach outperforms the baselines by a noticeable margin.
We also conduct in-depth ablation studies to analyze the ef-
fects of the key parameters. (3) We design an online match-
ing strategy, which brings consistent improvements with no
extra parameter costs.

2. Related Work
Audio-Visual Learning. With the development of
deep learning, audio-visual learning has also received
widespread attention in recent years and breakthroughs
have been made in various sub-fields [47, 41]. Audio-
visual representation learning aims at finding the corre-
lations between the audio and visual modality in a self-
supervised manner and thus provides good audio/visual
representations [1, 2, 30, 23, 29, 17]. In addition, many
works utilize audio information to improve the video anal-
ysis tasks [20, 15]. The objective of the audio-visual lo-
calization task is to localize the sound source in the vi-
sual context [34, 44, 2, 18]. Another important branch of
the audio-visual learning field lies in the cross-modality
generation, which consists of visual-to-audio [46, 27] and
audio-to-visual [5, 4, 16, 45] tasks. Most previous works in
audio-visual learning require that the training and validation
data come from the same domain or similar scenario, while
our work investigates a more challenging setting where the
training and testing set has no direct category overlaps.
Visual Sound Separation. By leveraging visual modality
to the sound separation task, models can utilize the richer
context information, which outperforms the single modality
approaches. Visual sound separation is explored on various
identities, such as speakers [10, 6, 26], objects [12] and mu-
sical sounds [44, 42, 13, 42, 43, 11]. Our work concentrates
on the branch of visual music separation.

Zhao et al. [44] propose the PixelPlayer framework with
the ‘mix-and-separation’ paradigm, which learns to sepa-
rate mixed audios into components and locate the sound
production regions on images in a self-supervised manner.
Considering the limitations of static images, many works

attempt to adopt visual cues from other modalities and fur-
ther benefit the separation task, such as motion [43], skele-
ton [11] and scene graph [3]. Gao et al. [14] incorporate
audio-visual consistency in the speech separation frame-
work but the training and validation sets act on the same
category, i.e., speakers. Unlike any of the above, we focus
on the visual sound separation task of unknown musical in-
struments and also propose an effective framework to han-
dle this new scene.
Transfer Learning on Novel Category. Humans naturally
have a strong ability to establish the perception of new ob-
jects, even with very limited samples. However, in most
cases, machines can obtain such perception ability only if it
has been fed enough examples. Thus, few-shot [7] and zero-
shot [24] learning are proposed to investigate the transfer-
ability of machines when very few or even no samples are
provided on new objects. Such learning paradigms can ef-
fectively reduce the burdens of data acquisition and storage.
Few-shot learning approaches utilize the information of the
limited samples from the new category, while the models
have no exposure to any instances of the target class un-
der the zero-shot setting. The mainstream solutions for the
few-shot setting include metric learning [21, 35, 37] and
meta-learning [9, 28]. Zero-shot learning approaches usu-
ally transfer knowledge from familiar classes, such as se-
mantic embedding [25, 22], or exploit external information
such as knowledge graphs [40]. In addition to the classifica-
tion scene, many works extend the few/zero-shot setting to
other sub-fields such as object detection [19] and semantic
segmentation [39]. Despite the success in vision fields, it is
still challenging to deploy novel category transfer learning
on multi-modality models. By leveraging the inter-modal
and intra-modal consistency guidance, our SeCo framework
exhibits impressive transferring performance on unknown
musical separation and serves as a strong baseline for this
novel and challenging task.

3. Methodology

We propose the ‘Separation-with-Consistency’ paradigm
(SeCo) to achieve the transfer learning of visual sound sep-
aration on novel musical instruments. Specifically, the con-
sistency guidance is composed of the inter-modal and intra-
modal parts, which require the separated sounds to align
with the corresponding visual cues and sounds of the same
category. The pipeline of our SeCo framework is illustrated
in Fig. 1.

3.1. Framework Overview

The goal of the visual sound separation task is to separate
the sound components from the mixed signal by leverag-
ing the visual information. Following previous works [44,
13, 43], we also adopt the ‘mix-and-separation’ paradigm
to carry out the training in a self-supervised manner.
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Figure 1. The whole pipeline of our “Separation-with-Consistency” framework is composed of the separation part and the consistency
part. In the separation stage, the visual features and audio features are extracted by the vision network NetV and audio network NetA,
respectively, and get fused in the fusion network NetF to predict the separation masks. In the consistency stage, the separated spectrograms
and the template spectrograms pass through the consistency network NetC to generate the high-level features for the computation of the
consistency constraints. The system is trained by minimizing the combination of the separation loss (Lmask) and the consistency loss
(Lintra−modal & Linter−modal).

Suppose we have two video clips {P,Q} with corre-
sponding audio signals {xP , xQ}, the audio components
are mixed to generate a synthetic mixture signal xm =
xP +xQ. For easy training, the mixed raw signal xm is first
converted to the spectrogram Sm via Short Time Fourier
Transform (STFT). The vision analysis network extracts
the visual feature fvi (i ∈ {P,Q}) from the input frames
for each video clip, while the audio feature fa is generated
by feeding the mixed spectrogram Sm into the audio net-
work. Afterward, the audio feature is fused with the visual
features {fvP, fvQ}, respectively, to produce the separation
masks {MP,MQ}. Finally, we multiply the mixed spec-
trogram with the predicted masks to obtain the clean spec-
trograms and produce the clean signals via Inverse STFT.

Different from the original setting, we aim to explore a
more challenging scenario to separate the unknown musical
instruments. To achieve the adaptation ability on the novel
categories, we introduce an additional consistency analy-
sis network, which requires the predicted separation results
to maintain both the inter-modal and intra-modal consis-
tency. The inter-modal consistency is implemented with the
synchronization of video and the corresponding separated
audio [23, 29], where the network can capture the audio-
visual correlations when encountering new categories and
acquire stronger transferring ability. Besides, based on the
observation that instruments of the same type normally have
similar timbres and tones, we add the intra-modal consis-
tency supervision to the system, which will shorten the dis-
tance of the audio features from the same category and en-

large that from different categories in the embedding space.

Inspired by the fact that humans may spend more time
observing and exploring repeatedly when encountering un-
familiar objects, we introduce the online matching mecha-
nism during the inference stage so that the model can better
fit the new instrument category. Specifically, the framework
will make explicit adjustments for each sample pair by re-
currently updating the model parameters from the supervi-
sion of the consistency loss. Please note that no Ground-
Truth masks are required since we only adopt the consis-
tency loss as the error signal. The initial separation sig-
nals may be coarse due to the considerable gap between the
training domain and the testing domain. But as the model
becomes more familiar with the test sample, it can grasp
more precise information and hence generate more delicate
audio components.

3.2. Separation Network

The separation network is composed of three compo-
nents, that is, the vision analysis network, the audio net-
work, and a fusion network. The mixed spectrogram passes
through the audio network to generate the audio feature.
The visual feature is extracted by the vision analysis net-
work for each video clip and then fused with the mixed au-
dio feature in the fusion network to produce the separation
mask. The process is illustrated in Fig. 2.
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Figure 2. Structure of the separation network.

3.2.1 Vision analysis network

Videos contain rich visual cues, such as appearances, tex-
ture, motion, and so on. In our framework, we focus on
motion information as the visual message for the follow-
ing considerations. First, compared with the spatial se-
mantics, motion relies less on category information, which
makes it more effective guidance when dealing with novel
classes. Second, humans can naturally associate the instru-
ment playing actions with the sounds, regardless of the spe-
cific instrument category. Thus, exploiting such correlation
will enhance the transferring ability of the system.

We adopt the fast pathway in the SlowFast network [8]
as our vision analysis network to extract visual features.
As the motion information is selected as the primary vi-
sual guidance, we remove the slow pathway and the lateral
connection structure from the original SlowFast architec-
ture and only keep the fast branch. Our vision network also
preserves the high temporal resolution and low channel ca-
pacity properties, which can capture the detailed motions
without introducing heavy parameter burdens. The specific
implementation of the network will be provided in the sup-
plementary. The vision network does not need optical flows
and can directly learn the motion representations from the
raw frames in an end-to-end manner.

3.2.2 Audio network

Following previous works [44, 13], we adopt a U-Net [33]
style encoder-decoder with skip-connections to extract the
audio features. The U-Net consists of 5 downsampling con-
volution layers and 5 de-convolution layers for upsampling.
The audio network takes the mixed spectrogram Sm as in-
put and yields audio feature of shape Da × T0 × F0, where
T0 and F0 refer to the temporal and frequency dimensions,
respectively, and have the same values as Sm. If not speci-
fied, we set Da = 64 in the experiments.

3.2.3 Fusion network

After the visual and audio features are extracted, we can
fuse the visual guidance into the audio feature to compute

the separation mask. Before the fusion, we adjust the chan-
nel dimension of the visual feature to Da via a linear pro-
jection and then apply a sigmoid activation on the projected
feature. The activated visual feature is multiplied with the
audio feature along the channel dimension to compute the
fusion mask of shape 1 × T0 × F0. Finally, we activate
the fusion mask via the sigmoid function to acquire the pre-
dicted separation mask. The separation loss Lmask is the
per-pixel binary cross-entropy loss between the predicted
mask and the Ground-Truth mask. The Ground-Truth mask
of each component is produced by checking whether the
target spectrogram is dominant in the mixed spectrogram at
every T -F unit:

MGT
i (x, y) = [Si(x, y) ≥ Sm(x, y)], i ∈ {P,Q}, (1)

where (x, y) refers to the coordinates along the T -F dimen-
sions.

3.3. Consistency Network
To raise the adaptation ability on novel classes, we pro-

pose two types of consistency contraints, i.e., inter-modal
consistency and intra-modal consistency, which are both
exerted on the predicted separation results. Thus, the
mixed spectrogram Sm is multiplied by the predicted masks
{MP, MQ} to develop the separated spectrograms {Spred

P ,
Spred
Q }. Furthermore, since the comparison of the raw

spectrograms may not be very informative, we use high-
level features to replace the low-level spectrograms for con-
sistency computation, which are extracted from the con-
sistency network. The network is stacked by 10 resid-
ual blocks, followed by a global max-pooling layer. The
consistency embeddings of {Spred

P ,Spred
Q } are denoted as

{fpredP , fpredQ }, respectively.

3.3.1 Inter-modal consistency

Since the audio-visual associations in videos are natural and
will not be disturbed by the category information, we add
the inter-modal consistency to the system to strengthen the
synchronization between the audio and visual elements so
that it will present stronger adaptation ability with novel
categories. Similar to [23], the training objective is min-
imizing the distance on the positive pairs while enlarg-
ing the distance on the negative pairs. The positive pairs
are synchronized audio-visual samples, i.e., the separated
audio embeddings and their corresponding visual features
{fpredi , fvi }, i ∈ {P,Q}. The negative pairs are obtained
by cross-pairing the uncorrelated audio and visual features,
that is, {fpredi , fvj }, i ̸= j, i, j ∈ {P,Q}.

At the beginning of training, the separation results may
be poor since the network has not fully converged yet, and
the suboptimal separation predictions may confuse the iden-
tification of positive pairs. Based on this consideration, we
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introduce the Ground-Truth audio features to assist the syn-
chronization learning, which are extracted from {SP,SQ}
and denoted as {fGT

P , fGT
Q }. The loss weights between the

predicted part and the Ground-Truth part vary according to
the training time. The inter-modal consistency loss is de-
fined as follows:

Linter−modal = γ(t)(D(fGT
P , fvP) +D(fGT

Q , fvQ))

+D(fpredP , fvP) +D(fpredQ , fvQ)

−D(fpredP , fvQ)−D(fpredQ , fvP),

(2)

where D refers to the L2 distance between two features and
γ(t) is the weight for the Ground-Truth assisted part that de-
cays over training time. All features are normalized before
computation.

3.3.2 Intra-modal consistency

The design of the intra-modal consistency is based on two
assumptions: (1) Instruments of the same category should
have similar tones and timbres so their audio signals are
supposed to be closer when projected to the feature space.
(2) To achieve a higher quality separation result, the audio
features of the two mixed videos should be pulled away.
Please note that assumption (2) does not conflict with (1)
because we require that the two mixed audios come from
different instrument classes.

For the in-class similarity learning in assumption (1), we
utilize audio signals {xtemp

P , xtemp
Q } from the additionally

sampled template video clips. Please note that the template
clip comes from a different video of the same category as
the separation target. The template audio signals are also
converted to spectrograms via STFT and then pass through
the consistency network to produce the high-level embed-
dings {f temp

P , f temp
Q }. The intra-modal consistency loss is

shown as followed:

Lintra−modal = D(fpredP , f temp
P ) +D(fpredQ , f temp

Q )

−D(fpredP , fpredQ ),
(3)

where D represents the L2 distance between the features
and all features are normalized before computation. The
consistency loss Lcs is the sum of the inter-modal and intra-
modal components:

Lcs = Linter−modal + Lintra−modal (4)

Therefore, the overall loss function of our framework is:

L = Lmask + λLcs, (5)

where λ is the weight of consistency loss.

3.4. Online Matching Strategy

We introduce an online matching strategy to promote
model compatibility with the samples from the novel do-
main in the inference phase. The parameters of networks
will be fine-tuned explicitly for each sample pair by the
backpropagation of error signals from the consistency loss.
In this way, the online matching process can be regarded
as ‘training during inference’ but we only adopt the con-
sistency loss as the supervision signal, and the optimiza-
tion is based on one single pair. We emphasize that no
Ground-Truth separation masks are involved in this pro-
cess so that the process can be regarded as a self-correction
mechanism (the Ground-Truth assisted part in Linter−modal

is excluded).
For each sample pair, we optimize the model parameters

via the consistency loss for several iterations and generate
the refined separation masks for the pair based on the up-
dated parameters. Before moving to the next pair, the pa-
rameters are switched to the original state so that the sam-
ples will not mutually affect each other. In practice, we fix
all BatchNorm layers to avoid the fluctuations caused by the
single sample input. Please refer to the supplementary for
more details about the process. Our online matching strat-
egy will not introduce any extra parameters but can bring
consistent improvements.

4. Experiments

4.1. Implementation Details

Our pipeline is implemented with the PyTorch frame-
work [31]. We use an Adam optimizer with betas (0.9,
0.999) and batch size 40. The weight of consistency loss λ
in Eq. 5 is set to 0.01. The decay parameter γ(t) in Eq. 2 fol-
lows the function: γ(t) = max(0.1, 0.9iter/100), where iter
refers to the training iterations. The framework is trained
for 17000 iterations. The learning rate of the vision and
consistency network are 1e-4 while the that of the audio
and fusion network are 1e-3. During the online matching
process, the learning rate is 1e-4 for the entire system and
each sample pair is refined for 5 iterations. Since the con-
sistency loss is the only supervision signal, we set λ to 1.0
in this process. The data processing details will be provided
in the supplementary.

4.2. Dataset and Evaluation Metrics

We quantitatively evaluate our framework on the
MUSIC-21 dataset [43] which contains 21 classes of in-
struments. The dataset is composed of untrimmed videos
crawled from the YouTube website so that the contents are
relatively diverse and complex. We randomly select 16 in-
struments as the training split and use the other 5 classes as
the testing split, denoted as split-1. More details are pro-
vided in the supplementary.
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Method SDR SIR SAR
NMF-MFCC [36] 0.90 5.37 6.94
Sound-of-Pixels [44] -2.56 2.42 4.97
Co-Separation [13] -2.89 1.97 5.23
MPNet [42] -2.32 2.07 5.54
Sound-of-Motions [43] 0.81 3.44 7.06
SeCo (motion only) 1.16 4.39 9.64
SeCo 4.01 7.13 11.62

Table 1. Sound separation results on the MUSIC-21 testing
dataset, higher is better for all metrics. The SeCo (motion only)
does not adopt the consistency loss and utilizes the motion infor-
mation as visual guidance. SeCo incorporates both the consistency
loss and the online matching strategy, which outperforms all base-
lines by a large margin. The results are reproduced with official
codes as existing pre-trained models are trained on all categories
in MUSIC-21.

We use the open-source mir eval library [32] to con-
duct quantitative evaluations on the separated audios,
where three metrics are selected: Signal-to-Distortion Ra-
tio (SDR), Signal-to-Interference Ratio (SIR), and Signal-
to-Artifact Ratio (SAR). The units are dB. The SDR score
is normally regarded as the most convincing metric.

4.3. Quantitative Results

The results of the baseline and our SeCo are shown in
Table 1. The traditional method NMF-MFCC [36] does not
exhibit obvious degeneration on the testing splits, which is
reasonable since it is non-learned. The traditional algorithm
can only return unpaired separation signals so that we con-
duct the exclusive matchings and take the overall best re-
sults. Even with the best matching, it still presents triv-
ial performances, which means that the traditional method
lacks the potential for further improvements. The deep-
learning based Sound-of-Pixels [44], Co-separation [13],
and MPNet [42] methods only adopt the spatial semantics
as visual cues and do not explicitly capture the temporal
correlations. The results indicate that they fail to success-
fully separate the sounds of the novel classes. The spatial
semantics such as appearances and textures are closely re-
lated to the category so the learned visual representations
cannot provide sufficient separation guidance when encoun-
tering the novel classes.

On the other hand, if the basic components of the visual
guidance are transferred from spatial to temporal, i.e., the
motion information, the over-fitting symptom can be alle-
viated, where we can see that motion only SeCo provides
a relatively good baseline. Compared with the spatial se-
mantics, the temporal information is less category-specific,
which can serve as more effective separation guidance with
the novel instrument types. Explanations for the effective-
ness may come from the following two aspects. Firstly, the
temporal information of motions can better interact with the
audio signals since there exists a natural correspondence be-
tween the player’s movements and sound components. Ex-

Linter−modal Lintra−modal SDR SIR SAR
% % 1.16 4.39 9.64
" % 2.05 4.93 10.48
% " 2.16 5.40 10.01
" " 2.37 5.03 11.29

Table 2. Ablation study of the importance of consistency loss com-
ponents on the MUSIC-21 testing dataset.

ploiting such correlations will reduce the dependence on
categories and enhance the adaptation ability to new instru-
ments. Secondly, [43, 48] show that motion cues can be
used to guide the separation on duets of the same instru-
ments while [44] exhibits inferior performances, which also
indicates that motions are less dependent on categories.

We also compare with [43], which adopts optical flow
as the visual guidance. The results indicate that explicitly
using motion information may also benefit the separation
process of novel categories. However, it is still inferior to
directly learning the motion representations from the raw
frames, probably due to the noise in optical flow estima-
tions. Considering the additional computational cost to ex-
tract optical flow, learning motion representations in an end-
to-end manner may be a more reasonable choice.

Despite the progress of motion representations, simply
replacing the visual modality still fails to bring satisfying
performance improvements. In general, the baseline re-
sults demonstrate that it is a challenge for the normal frame-
works to handle the sound separation task on musical instru-
ments that have never seen before. Our SeCo framework
outperforms all baseline methods by a large margin under
this challenging scenario, which demonstrates the effective-
ness of our method. Although changing the visual modality
can bring a relatively good starting point, we argue that the
main improvements come from the consistency loss. By ac-
complishing the music separation on novel categories, our
method outcomes the limitation of prior works and proves
the feasibility of deploying a more general setting. The re-
sults may expand the scope of visual music separation and
make the task more versatile.

4.4. Ablation Study

4.4.1 Inter-modal v.s. intra-modal consistency

We conduct experiments to investigate the importance of the
different loss components and report the results in Table 2.
We can see that both the inter-modal consistency and the
intra-modal consistency will promote the separation perfor-
mance on novel musical instrument types, since adopting
either loss will win the baseline method (w.o. the consis-
tency loss). As depicted in the Table, we achieve the best
results by employing both inter-modal and intra-modal con-
sistency losses regarding all evaluation criteria.
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Baseline SeCo (w. O.M.)
SDR SIR SAR SDR SIR SAR

Image -2.56 2.42 4.97 2.95 6.34 9.45
Skeleton -1.35 2.83 6.05 3.43 7.82 9.97
Motion 1.16 4.39 11.10 3.91 6.50 11.34

Table 3. Sound separation results when utilizing visual cues of dif-
ferent modalities. We report results from both the baseline and the
SeCo method. The SeCo method includes the normal training and
the subsequent online matching process.

4.4.2 Comparison of different visual cues

To investigate the effects of visual cues, we conduct exper-
iments on three visual modalities, i.e., image, skeleton, and
motion. Implementation details of the image and skeleton
are provided in the supplementary.

The performance comparisons of different visual modal-
ities are summarized in Table 3, where both the baseline
and our SeCo approaches are presented. From the base-
line results, we can see that when using the static images as
the visual guidance, the model fails to successfully separate
sounds from the unknown musical instruments. We suspect
that the failure may come from the dependence of spatial
information on categories, which causes over-fitting to the
training scenarios, as analyzed in Sec. 4.3. The visual fea-
tures of the skeleton modality incorporate both the spatial
and temporal relations and we can see that the over-fitting
problem has been a little bit alleviated. However, simply re-
placing the images with skeletons is not enough to generate
the optimal results. The possible reason is that the skeleton
data only retain the joint coordinates of the players while
discarding much detailed information in the original video
clips. Such simple and intuitive visual cues may hinder
the ability to conduct visual sound separation on new cat-
egories, given no additional prior knowledge. In contrast,
for the motion modality, the 3d-CNN based vision analysis
network directly learns the temporal representations from
the original video clips, which can capture richer seman-
tics. This property makes the motion modality better visual
cues in our setting and provides an advanced starting point
for further improvements.

In addition to the analysis of the baseline results, we also
evaluate the performances of our SeCo framework when
utilizing different vision modalities. Please note that the
inter-modality loss is not applicable to the image-based vi-
sual cues. Therefore, for a fair comparison, only the intra-
modality loss is applied as the consistency constraints for
all modalities. The SeCo pipeline includes both the normal
training and the online matching process and we can find
that SeCo considerably exceeds the baseline on all three
modalities. The results verify the robustness and flexibil-
ity of our approach.

4.4.3 Division of musical instrument categories

To ensure that our SeCo framework does not rely on cer-
tain instrument types, we make verifications on different
train/test splits. These extra train/test splits also follow the
16/5 category division but the internal instrument types vary
from each other. We conduct experiments on 2 additional
splits and list the results in Table 4, which demonstrate that
our SeCo framework is effective on various splits rather
than constrained to certain specific instrument types. The
category divisions of the splits are provided in the supple-
mentary. Moreover, the results also confirm the robustness
of our online matching strategy, which can also handle dif-
ferent instrument types.

w/o O.M. w. O.M.
SDR SIR SAR SDR SIR SAR

Split-1 2.37 5.03 11.29 4.01 7.13 11.62
Split-2 3.81 6.28 12.67 5.72 8.87 13.38
Split-3 2.72 5.23 12.04 3.89 6.93 12.50

Table 4. Separation results on different train/test splits. We show
results w/o and w. the online matching strategy (denoted as O.M.
in table), respectively.

4.4.4 Online matching iterations

The key hyper-parameter of the online matching strategy
is the number of optimization steps at each sample pair, de-
noted as iterations. We investigate the influence of changing
the optimization iterations and visualize the trends in Fig. 4.
We use the SDR scores to represent the performances since
it is the most important metric. Naturally, increasing the
iterations will help the network get more familiar with the
current sample and thus produce better separation results
but we can also observe the marginal effect with longer it-
erations. The trend also indicates that the online matching
strategy can bring stable improvements instead of random
fluctuations. Please note that the online matching strategy
will only update the existing parameters so that the perfor-
mance gains are obtained at no cost of extra parameters.

4.5. Qualitative Results
We visualize four cases of the separated spectrograms on

the MUSIC-21 testing dataset in Fig. 3. In (a) and (b), we
compare the baseline method and the SeCo method. Both
methods adopt the motion information as visual cues but
the consistency loss is not included in the baseline method.
We can observe that the baseline results lose many details
and contain components from its mixture audio counterpart,
while the SeCo results are closer to the Ground-Truth spec-
trograms. The comparisons vividly show the effectiveness
of the consistency loss.

Although our SeCo method is superior to the baseline
method, it may still encounter the detail missing and noisy
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GT-1 Baseline-1 SeCo-1

GT-2 Baseline-2 SeCo-2

GT-1 Baseline-1 SeCo-1

GT-2 Baseline-2 SeCo-2

GT-1 SeCo-1 O.M.-1

GT-2 SeCo-2 O.M.-2

GT-1 SeCo-1 O.M.-1

GT-2 SeCo-2 O.M.- 2

(a) (b)

(c) (d)

Mix

MixMix

Mix

Figure 3. Visualization of the separated spectrograms on the MUSIC-21 testing dataset. The index ‘1 & 2’ refers to the two audio compo-
nents to be separated and GT stands for the ’Ground-Truth’ spectrograms.
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Figure 4. Trend of the SDR scores with different online matching
iterations. Iteration 0 refers to the result of not adopting the online
matching strategy.

problems due to the challenge of the unknown musical
sound separation task. However, these problems can be
alleviated by the subsequent online matching process. As
shown in (c) and (d), the online matching process can cor-
rect the undesirable effects from the other audio component
and grasp more details. In this way, we can obtain separa-
tion results of higher quality.

5. Discussion and Future Work
Experimental results demonstrate that existing visual

sound separation frameworks do not inherently possess the
ability to generalize well on novel instrument categories.
As a preliminary work, we leverage some priors (e.g., tem-
plates from the same category) to enhance the transferabil-
ity of unseen instruments during the training and testing
stages, which raises the separation performance and verifies
the feasibility of this setting. Compared with the delicate
point-wise separation masks, categories can be regarded as
global messages, and we find that such coarse priors can
assist the process. However, we hope those priors can be
removed in future explorations to improve the versatility of
this setting further.

To explore the effects of the visual analysis network, we
change the backbone from FastNet to R3D [38] and observe
the SDR score decreases to 2.51 dB. The possible reason is

that R3D pays less attention to the motion messages, affect-
ing its adaptation to new instrument categories. The results
also indicate that visual encoders play an important role in
the separation process, especially in this setting. Although
FastNet is an economical solution, we wish to see more ex-
plorations on the visual encoders to provide more effective
separation guidance.

6. Conclusions
In this work, we explore a novel and challenging sce-

nario of visual sound separation, i.e., music separation on
unknown musical instruments. To promote the adapta-
tion ability for the deep model on unfamiliar melodies, we
design the Separation-with-Consistency (SeCo) framework
that utilizes both the inter-modal and intra-modal consis-
tency constraints. Moreover, to fully exploit the consistency
potentials, we devise the online matching strategy, which
further boosts the system performance with no extra param-
eter costs. We conduct extensive ablation studies to analyze
the key factors in the system, which also exhibit that our
SeCo framework is effective and robust on various visual
modalities and musical instrument types. Our work proves
the feasibility of separation on novel musical instruments
and hence expands the scope of the visual sound separa-
tion task. We wish our work could inspire the community
to further explore the transferability of deep models in the
audio-visual learning field.
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