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Abstract

Weakly-supervised Temporal Action Localization
(WTAL) aims to classify and localize action instances in
untrimmed videos with only video-level labels. Existing
methods typically use snippet-level RGB and optical flow
features extracted from pre-trained extractors directly.
Because of two limitations: the short temporal span of
snippets and the inappropriate initial features, these WTAL
methods suffer from the lack of effective use of temporal
information and have limited performance. In this paper,
we propose the Temporal Feature Enhancement Dilated
Convolution Network (TFE-DCN) to address these two
limitations. The proposed TFE-DCN has an enlarged
receptive field that covers a long temporal span to observe
the full dynamics of action instances, which makes it
powerful to capture temporal dependencies between snip-
pets. Furthermore, we propose the Modality Enhancement
Module that can enhance RGB features with the help of
enhanced optical flow features, making the overall features
appropriate for the WTAL task. Experiments conducted on
THUMOS’14 and ActivityNet v1.3 datasets show that our
proposed approach far outperforms state-of-the-art WTAL
methods.

1. Introduction

Temporal action localization (TAL), which is one of
the main tasks of video understanding, aims at localiz-
ing the start and end timestamps of action instances in an
untrimmed video and classifying them. It has been used
in various video understanding applications, such as in-
telligent surveillance analysis [34] and video retrieval [9].
Many works [32, 20, 42, 2, 24, 39] have put their effort into
fully-supervised temporal action localization and achieved
great localization results. However, fully-supervised meth-
ods require a huge amount of fine-grained frame-level an-
notations, which need manual labeling and have annotation
bias of annotators. To address this issue, weakly-supervised

Figure 1. The results of the previous method (BaS-Net [16]) with
inaccurate action boundaries and false positive detection.

temporal action localization (WTAL), which only requires
easily collected video-level categorical labels, has gained
intensive attention [36, 28, 21, 16, 40, 41, 8] in recent years.

Though WTAL simplifies the data collection process,
it is challenging to do temporal action localization with
only video-level annotations, especially for complex action
scenes. To tackle the issue, many WTAL methods adopt
the multiple-instance learning (MIL) framework [36, 28,
31, 33, 21, 29, 16]. These methods uniformly sample the
video into snippets and then generate the Temporal Class
Activation Sequence (TCAS), which is the sequence of cat-
egorical probabilities over action classes for each snippet.
Finally, the top-k mean strategy is used to aggregate TCAS
to obtain the final video-level prediction.

While previous methods have achieved significant im-
provement on WTAL, the performance is still limited.
One major problem is the inaccurate predictions of action
boundaries. Fig. 1 demonstrates examples of some errors.
Though it is challenging to obtain accurate action bound-
aries with only video-level annotations, we argue that the
insufficient use of temporal information is a key reason for
the limited results. A complete action instance usually cov-
ers a relatively long temporal span, while a snippet is un-
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able to observe the full dynamics of that action instance.
Another reason is that most WTAL methods directly use
the RGB and optical flow features extracted by pre-trained
models, e.g., I3D [1], which are customized and trained
for trimmed video action classification rather than WTAL.
Thus, enhancing features with temporal information is a
feasible approach to address this issue.

In this paper, we propose the Temporal Feature Enhance-
ment Dilated Convolution Network (TFE-DCN) to address
two aforementioned limitations. Inspired by the success-
ful application of temporal convolution network (TCN) on
fully-supervised temporal action localization [4], we design
a novel Temporal Feature Enhancement Dilated Convo-
lution Module (TFE-DC) with several advantages. First,
it enlarges the receptive field, enabling the model to ob-
tain temporal information of complete action instances and
eliminating incoherence of temporal information caused by
the short temporal span of snippets. Second, it can cap-
ture temporal dependencies between snippets in the recep-
tive field, facilitating a snippet to exploit motion clues from
other snippets across the entire receptive field to enhance its
feature representation, which is powerful for enhancing fea-
tures and separating action instances from the background.

Though TFE-DC Module extracts temporal information
and enhances optical flow features, it is notable that ini-
tial RGB features are not enhanced. The inconsistency be-
tween the two modalities results in the degradation of per-
formance. Therefore, we propose the Modality Enhance-
ment Module that can enhance RGB features with the help
of enhanced optical flow features. In this module, initial
RGB features and enhanced optical flow features are fed
into a sharing convolution layer to obtain two attention se-
quences respectively. Then we perform element-wise mul-
tiplication on these two attention sequences and initial RGB
features to obtain the enhanced RGB features. The Modal-
ity Enhancement Module keeps the consistency between the
two modalities and also introduces improved optical flow
features to enhance RGB features.

Our main contributions are summarized as three-fold:

• We show that TFE-DCN can effectively use temporal
features and has accurate predictions of action bound-
aries. The proposed TFE-DC Module has a novel di-
lated structure that reflects the influence of temporal
information at different receptive field scales on final
attention weights, rather than following the common
dilated residual layer as MS-TCN [4].

• We propose a Modality Enhancement Module that
keeps the consistency between two modalities and re-
calibrates initial RGB features with the help of en-
hanced optical flow features, making them more ap-
propriate for the WTAL task.

• Extensive experiments are conducted on THUMOS’14

and ActivityNet v1.3 to demonstrate the effectiveness
of our proposed method. Our TFE-DCN outperforms
all state-of-the-art WTAL methods.

2. Related Work
Temporal Convolution Network. Temporal Convolution
Network is successfully applied in speech synthesis [35]
and introduced to temporal action localization by some
works [14, 18, 4]. Lea et al. [14] propose an encoder-
decoder framework for action segmentation and detection.
TDRN [18] uses a residual stream to analyze video infor-
mation at full temporal resolution. MS-TCN [4] uses di-
lated convolution residual layer instead of temporal pooling
to capture long-range dependencies and gets better results.
Fully-supervised Temporal Action Localization. Fully-
supervised TAL requires frame-level annotations of action
instances. Most methods [3, 32, 42, 20] generate temporal
action proposals and then do classification based on these
proposals. CDC [32] performs temporal upsampling and
spatial downsampling simultaneously to predict frame-level
action proposals. BSN [20] locates temporal boundaries
with high probability and then combines these boundaries
into proposals. P-GCN [39] uses graph convolution net-
works to exploit the relation between proposals.
Weakly-supervised Temporal Action Localization.
Though some methods [26, 15] use point-level labels,
WTAL usually requires only video-level annotations and
greatly reduces the workload of labeling. Untrimmed-
Nets [36] formally proposes the WTAL task and tries to
address it with Multi-Instance Learning (MIL) method.
Sparse Temporal Pooling Network (STPN) [28] introduces
an attention mechanism with a proposed sparsity constraint.
W-TALC [31] designs a co-activity similarity loss and uses
deep metric learning to train the network. However, these
early works cannot effectively distinguish action instances
and backgrounds and fail to localize the complete action.
To tackle the issue, many works [21, 29, 16, 12, 17, 41, 27]
improve the attention mechanism to suppress the activation
scores of backgrounds and highlight the activation scores
of action. BaS-Net [16] introduces an auxiliary class
for background and uses a filtering module to suppress
the activation of background. Liu et al. [21] develop a
parallel multi-branch classification framework to model
the complete action. HAM-Net [12] uses a hybrid at-
tention mechanism to localize complete action instances.
CoLA [41] utilizes snippet contrastive learning to improve
localization results.

Recently, CO2-Net [8] and ACGNet [38] have all fo-
cused on enhancing features for WTAL. CO2-Net uses a
cross-modal consensus module to reduce task-irrelevant in-
formation redundancy and make features appropriate for
WTAL. ACGNet uses a graph convolutional network to en-
hance the discriminability of action representations, making
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Figure 2. An overview of the proposed Temporal Feature Enhancement Dilated Convolution Network (TFE-DCN), which consists of
four parts: (1) pre-trained feature extractor that outputs RGB features XRGB

n and optical flow features XFlow
n ; (2) Temporal Feature

Enhancement Dilated Convolution Module (TFE-DC Module) that generates enhanced optical flow features XFlow∗
n and temporal attention

weights AFlow
n ; (3) Modality Enhancement Module that generates enhanced RGB features XRGB∗

n and spatial attention weights ARGB
n ;

(4) classifier and element-wise multiplication that generate the Temporal Class Activation Sequence (TCAS) Sn and suppressed TCAS S̄n.

it easier to classify hard examples based on enhanced fea-
tures. Our method is distinct from CO2-Net and ACGNet in
two main aspects. (1) TFE-DCN can effectively use tempo-
ral information to enhance temporal features and then en-
hance RGB features with the enhanced temporal features.
While CO2-Net does not emphasize temporal information
and treats two modality features equally. (2) TFE-DCN uses
multi-layer dilated convolutions to capture temporal depen-
dencies between snippets. While ACGNet uses the tempo-
ral diffusion graph to obtain temporal dependencies across
snippets. Our model achieves much better performance in
experiments.

3. Method

In this section, we first present the problem formulation
of weakly-supervised temporal action localization (WTAL)
and then describe the structure overview of our proposed
TFE-DCN. The overall architecture is shown in Fig. 2. The
details of the two modules are demonstrated in Section 3.3
and Section 3.4. Finally, we illustrate loss functions and
action localization.

3.1. Problem Formulation

Assume we are given a set of N untrimmed videos
{vn}Nn=1 and the video-level categorical labels {yn}Nn=1,
where yn ∈ RC is a normalized multi-hot vector and C
is the number of action categories. The goal of WTAL is
to generate classification and temporal localization results
of all action instances as action proposals (ts, te, c, φ) for
each video, where ts, te, c and φ denote the start time, the
end time, the predicted action category and the confidence
score of the action proposal, respectively.

3.2. Method Overview

3.2.1 Feature Extractor

Following the common practice [28, 16], we first divide
each video vn into 16-frame non-overlapping snippets and
sample a fixed number of T snippets to represent the video.
The RGB features XRGB

n = {xRGB
n,i }Ti=1 and the optical

flow features XFlow
n = {xFlow

n,i }Ti=1 are extracted from the
sampled RGB snippets and optical flow snippets respec-
tively with the pre-trained feature extractor, i.e., I3D [1].
xRGB
n,i , xFlow

n,i ∈ RD are features of the i-th RGB snippet
and optical flow snippet, and D is the feature dimension.

3.2.2 Structure Overview

The overall framework of our proposed TFE-DCN is
demonstrated in Fig. 2. The essential parts of the framework
are the Temporal Feature Enhancement Dilated Convolu-
tion Module (TFE-DC Module) and Modality Enhancement
Module. The TFE-DC Module aims to effectively utilize
temporal information and enhance optical flow features.
The input of this module is optical flow features XFlow

n

and the outputs are enhanced optical flow features XFlow∗
n

and temporal attention weights AFlow
n ∈ RT . The Modal-

ity Enhancement Module aims to enhance the RGB fea-
tures XRGB

n with the help of enhanced optical flow features
XFlow∗

n . The inputs are XRGB
n and XFlow∗

n , and the out-
puts are enhanced RGB features XRGB∗

n and spatial atten-
tion weights ARGB

n ∈ RT . Then XRGB∗
n and XFlow∗

n are
concatenated to obtain X∗

n ∈ R2D×T .
Given the concatenated features X∗

n, we apply a classi-
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Figure 3. An overview of the proposed Temporal Feature Enhance-
ment Dilated Convolution Module (TFE-DC Module). The mod-
ule contains a K-layer dilated convolution network (K = 3 in
this figure) to enlarge the receptive field and capture dependencies
between snippets with different temporal scales. It also has an at-
tention weights generation mechanism that averages the attention
weights obtained from the outputs of each layer. This allows the
final attention weights AFlow

n can cover temporal information of
receptive fields with different sizes.

fier to obtain the TCAS Sn.

Sn = fcls(X
∗
n), (1)

where fcls is the classifier and Sn ∈ R(C+1)×T has C + 1
dimensions since we follow the BaS-Net [16] and set one
auxiliary class for the background. Then we use temporal
attention weights AFlow

n to suppress the activation of back-
grounds in Sn and obtain the suppressed TCAS S̄n:

S̄n = AFlow
n ⊗ Sn, (2)

where ⊗ denotes element-wise multiplication over temporal
dimension.

3.3. Temporal Feature Enhancement Dilated Con-
volution Module

In this work, we apply the TFE-DC Module to effec-
tively use temporal information and enhance optical flow
features to make them more appropriate for the WTAL task.
Multi-layer dilated convolution network can enlarge the re-
ceptive field and capture long-range dependencies between
snippets. These properties are conducive to the model to
fully learn the temporal features. Besides, a complete ac-
tion instance usually spans a relatively long temporal win-
dow, while an optical flow snippet only covers 16 frames
and is insufficient to observe the full action instance. The
TFE-DC Module can enlarge the receptive field to cover the
temporal span of complete action instances and observe the
full dynamics of that action, which is the embodiment that
can make full use of temporal information.

As shown in Fig. 3, this module mainly consists of a K-
layer dilated convolution network and an attention weights
generation mechanism. In K-layer dilated convolutions, we

feed the optical flow features XFlow
n ∈ RD×T into the first

layer fdilated,1 and the dilation value is 1. Then outputs
go through a ReLU layer and the intermediate results Mn,1

are obtained. For the k-th layer fdilated,k, the process is
formulated as below:

Mn,k = ReLU(fdilated,k(Mn,k−1, 2
k−1)),

k = 1, . . . ,K,Mn,0 = XFlow
n ,

(3)

where Mn,k ∈ RD×T is the output of the k-th dilated con-
volution layer and 2k−1 is the dilation value. The receptive
field expands to 2k + 1 snippets for the k-th layer. Finally,
we apply the sigmoid function on Mn,K , use the outputs to
enhance optical flow features, and obtain enhanced optical
flow features XFlow∗

n as below:

XFlow∗
n = σ(Mn,K)⊗XFlow

n , (4)

where Mn,K is the final output of the K-layer dilated con-
volution network, σ is the sigmoid function and ⊗ denotes
element-wise multiplication.

For attention weights generation, we apply the sigmoid
function and element-wise multiplication on each Mn,k and
use the filtering module fatt,k to generate attention weights
AFlow

n,k ∈ RT . The filtering module consists of three tempo-
ral 1D convolutional layers followed by a sigmoid function.
The temporal attention weights AFlow

n are the weighted av-
erage of {AFlow

n,k }Kk=1. The process is formulated as below:

AFlow
n,k = fatt,k(σ(Mn,k)⊗XFlow

n ), k = 1, . . . ,K, (5)

AFlow
n =

K∑
k=1

akA
Flow
n,k , (6)

where ak > 0, k = 1, . . . ,K are weights and
∑K

k=1 ak =
1.

3.4. Modality Enhancement Module

After obtaining enhanced optical flow features XFlow∗
n

and temporal attention weights AFlow
n , the next step is to

enhance RGB features XRGB
n . Inspired by the Cross-modal

Consensus Module [8], we propose the Modality Enhance-
ment Module that enhances RGB features with the help of
enhanced optical flow features. The main difference is that
we use a sharing convolution layer to make weights distri-
butions of two modalities more approached. This step does
improve performance and is different from existing channel
attention methods.

As shown in Fig. 4, we input RGB features XRGB
n and

enhanced optical flow features XFlow∗
n into a sharing con-

volution layer and then apply the sigmoid function on the
outputs of the convolution layer to obtain two weights. Then
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Figure 4. An overview of the proposed Modality Enhancement
Module. This module aims to enhance RGB features XRGB

n with
the help of enhanced optical flow features XFlow∗

n . The sharing
convolution layer is beneficial to make weights distributions of the
two modalities approached. The enhanced RGB features XRGB∗

n

are fed into the filtering module to obtain spatial attention weights
ARGB

n .

we use these two weights to enhance initial RGB features.
The process is expressed as below:

XRGB∗
n = XRGB

n ⊗ σ(fconv(X
RGB
n ))

⊗ σ(fconv(X
Flow∗
n )),

(7)

where XRGB∗
n is the enhanced RGB features, fconv is the

sharing convolution layer, σ is the sigmoid function and ⊗
is the element-wise multiplication.

After obtaining XRGB∗
n , we feed it into the filtering

module to obtain the spatial attention weights ARGB
n :

ARGB
n = fatt(X

RGB∗
n ), (8)

where fatt is the filtering module that consists of three tem-
poral 1D convolutional layers followed by the sigmoid func-
tion. It is notable that we do not use ARGB

n to suppress
background snippets (as shown in Fig. 2).

3.5. Loss Functions

To optimize our proposed TFE-DCN framework, we first
apply the loss function of BaS-Net [16], which is expressed
as:

LBaS = Lbase + Lsupp + λ1Lnorm, (9)

where Lbase and Lsupp are the top-k multiple-instance
learning loss for TCAS Sn and the suppressed TCAS S̄n

respectively and λ1 is a hyper-parameter. The normaliza-
tion loss Lnorm is to make the attention weights sparse:

Lnorm =
1

2
(∥AFlow

n ∥1 + ∥ARGB
n ∥1), (10)

where ∥ · ∥1 is the L1-norm function.
To optimize temporal attention weights AFlow

n and spa-
tial attention weights ARGB

n , we apply the Lguide [12] to
guide the background class activation, which is the last

column of TCAS Sn, to follow the opposite of attention
weights AFlow

n and ARGB
n :

Lguide =

T∑
t=1

[|1−AFlow
n (t)− sC+1(t)|

+ |1−ARGB
n (t)− sC+1(t)|],

(11)

where AFlow
n (t), ARGB

n (t) and sC+1((t) are the t-th ele-
ment of AFlow

n , ARGB
n and background class activation re-

spectively. We also apply mutual learning loss Lml [8] to
set AFlow

n and ARGB
n as pseudo-labels of each other to do

mutual learning between two modalities.
By aggregating all the above objective functions, we

train our proposed TFE-DCN on the final objective func-
tion:

L =Lbase + Lsupp + λ1Lnorm

+ λ2Lguide + λ3Lml,
(12)

where λ1, λ2 and λ3 are all hyper-parameters. In experi-
ments, we set λ1 = 1, λ2 = 1 and λ3 = 0.8 by default.

3.6. Action Localization

Following BaS-Net[16], We first use the top-k strategy
on TCAS Sn to obtain top-k scores and calculate video-
level categorical probabilities. Then we threshold the ac-
tivation scores with θa to predict action categories in the
video. Temporal attention weights AFlow

n are used to dis-
card the background snippets, and the consecutive segments
of the remaining snippets become candidate action propos-
als, i.e., (ts, te, c, φ). Then we use suppressed TCAS S̄n

to calculate the confidence score φ for each proposal with
the Outer-Inner-Contrastive method [33]. Finally, Non-
Maximum Suppression (NMS) is used to remove the over-
lapping proposals.

4. Experiments
4.1. Experiments Setting

Dataset. We conduct experiments on two popular WTAL
benchmarks: THUMOS’14 [13] and ActivityNet v1.3 [7].
THUMOS’14 is a widely used benchmark for the WTAL
task. It contains 200 validation videos and 213 test videos of
20 sports categories. Following previous works [40, 16, 38],
we use 200 validation videos to train our framework and use
213 test videos for evaluation.

ActivityNet v1.3 has 10024 training videos, 4926 valida-
tion videos, and 5044 testing videos from 200 action cate-
gories. Since annotations for the testing set are not released,
we train on the training set and test on the validation set.
Evaluation Metrics. Following the standard evaluation
metrics, we evaluate our method with mean Average Preci-
sion (mAP) under different Intersection-over-Union (IoU)
thresholds. We adopt the official evaluation code provided
by ActivityNet to evaluate our method on both datasets.
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Supervision
(Feature) Method Publication mAP@IoU (%) AVG

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.5 0.1:0.7

Fully
(-)

SSN [42] ICCV’17 60.3 56.2 50.6 40.8 29.1 - - 47.4 -
TAL-Net [2] CVPR’18 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3 45.1
GTAN [24] CVPR’19 69.1 63.7 57.8 47.2 38.8 - - 55.3 -
P-GCN [39] ICCV’19 69.5 67.5 63.6 57.8 49.1 - - 61.5 -

Weakly
(UNT)

Liu et al. [21] CVPR’19 53.5 46.8 37.5 29.1 19.9 12.3 6.0 37.4 29.3
BaS-Net [16] AAAI’20 56.2 50.3 42.8 34.7 25.1 17.1 9.3 41.8 33.6
TSCN [40] ECCV’20 58.9 52.9 45.0 36.6 27.6 18.8 10.2 44.2 35.7

Weakly
(I3D)

Lee et al. [17] AAAI’21 67.5 61.2 52.3 43.4 33.7 22.9 12.1 51.6 41.9
CoLA [41] CVPR’21 66.2 59.5 51.5 41.9 32.2 22.0 13.1 50.3 40.9

AUMN [25] CVPR’21 66.2 61.9 54.9 44.4 33.3 20.5 9.0 52.1 41.5
TS-PCA [22] CVPR’21 67.6 61.1 53.4 43.4 34.3 24.7 13.7 52.0 42.6
UGCT [37] CVPR’21 69.2 62.9 55.5 46.5 35.9 23.8 11.4 54.0 43.6

FAC-Net [10] ICCV’21 67.6 62.1 52.6 44.3 33.4 22.5 12.7 52.0 42.2
CO2-Net [8] MM’21 70.1 63.6 54.5 45.7 38.3 26.4 13.4 54.4 44.6

ACGNET [38] AAAI’22 68.1 62.6 53.1 44.6 34.7 22.6 12.0 52.6 42.5
FTCL [5] CVPR’22 69.6 63.4 55.2 45.2 35.6 23.7 12.2 53.8 43.6
DCC [19] CVPR’22 69.0 63.8 55.9 45.9 35.7 24.3 13.7 54.1 44.0

Huang et al. [11] CVPR’22 71.3 65.3 55.8 47.5 38.2 25.4 12.5 55.6 45.1
ASM-Loc [6] CVPR’22 71.2 65.5 57.1 46.8 36.6 25.2 13.4 55.4 45.1

TFE-DCN WACV’23 72.3 66.5 58.6 49.5 40.7 27.1 13.7 57.5 46.9

Table 1. Comparisons of our method with state-of-the-art fully-supervised and weakly-supervised TAL methods on the THUMOS’14
testing set. UNT and I3D are abbreviations for UntrimmedNet features and I3D features, respectively. AVG is the average mAP at multiple
IoU thresholds, i.e., 0.1:0.1:0.5 and 0.1:0.1:0.7.

Implementation Details. Our proposed TFE-DCN is im-
plemented in PyTorch [30]. We use the I3D network [1]
pre-trained on Kinetics [1] to extract both RGB and optical
flow features. The extractor is not fine-tuned for fair com-
parisons. Video snippets are sampled every 16 frames and
the feature dimension of each snippet is 1024. During the
training, we set the sampling number T to be 320 for THU-
MOS’14 and 75 for ActivityNet v1.3. All filtering modules
that generate attention weights consist of three temporal 1D
convolution layers followed by the sigmoid function. The
classifier consists of two temporal 1D convolution layers.
For TFE-DC Module, we set the number of dilated convo-
lution layers K to be 3.

For optimization, we used Adam optimizer with a learn-
ing rate of 5e-4 for both datasets. Training epochs are
set to 3000 for THUMOS’14 and 25000 for ActivityNet
v1.3. The batch size is set to 10 and 16 for THUMOS’14
and ActivityNet v1.3, respectively. For hyper-parameters,
ak = 1

3 (k = 1, 2, 3) in TFE-DC Module.

4.2. Comparison with State-of-the-art Methods

In Table 1, we compare our TFE-DCN with state-of-the-
art WTAL methods and several fully-supervised methods
on THUMOS’14. We observe that our method far outper-
forms all previous WTAL methods at all IoU thresholds.
Especially on the key criterion AVG 0.1:0.5, our method

surpasses the state-of-the-art method [11] by 1.9%. When
compared with fully-supervised methods, TFE-DCN out-
performs SSN [42] and TAL-Net [2] and achieves com-
parable results with GTAN [24] and P-GCN [39] at low
IoU thresholds. The results demonstrate the superior per-
formance of our approach.

We also conduct experiments on ActivityNet v1.3 and
the comparison results are shown in Table 2. Our method
outperforms all the state-of-the-art WTAL methods and
achieves the performance of 25.3% average mAP on Ac-
tivityNet v1.3.

4.3. Ablation Study and Analysis

In this work, we propose a TFE-DC Module that enlarges
the receptive field and captures temporal dependencies be-
tween snippets, and a Modality Enhancement Module to
recalibrate initial RGB features with the help of enhanced
optical flow features. Also, the final objective function con-
sists of several components. Therefore, we first verify the
effectiveness of each component. Then we analyze the effi-
cacy of each module in TFE-DCN. All ablation studies are
conducted on the THUMOS’14 testing set.
Ablation Study on Final Objective Function. In Table
3, we conduct an ablation study to investigate the contri-
bution of each component in the final objective function
(Eq.12). We do not test Lbase and Lsupp because they
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Method mAP@IoU (%)
0.5 0.75 0.95 AVG

BaS-Net [16], AAAI’20 34.5 22.5 4.9 22.2
TSCN [40], ECCV’20 35.3 21.4 5.3 21.7

ACSNet [23], AAAI’21 36.3 24.2 5.8 23.9
AUMN [25], CVPR’21 38.3 23.5 5.2 23.5
TS-PCA [22], CVPR’21 37.4 23.5 5.9 23.7
UGCT [37], CVPR’21 39.1 22.4 5.8 23.8

FAC-Net [10], ICCV’21 37.6 24.2 6.0 24.0
FTCL [5], CVPR’22 40.0 24.3 6.4 24.8
DCC [19], CVPR’22 38.8 24.2 5.7 24.3

Huang et al. [11], CVPR’22 40.6 24.6 5.9 25.0
ASM-Loc [6], CVPR’22 41.0 24.9 6.2 25.1
TFE-DCN, WACV’23 41.4 24.8 6.4 25.3

Table 2. Comparison of our method with state-of-the-art WTAL
methods on the ActivityNet v1.3 validation set. AVG is the aver-
age mAP at the IoU threshold 0.5:0.05:0.95.

Exp Lbase Lsupp Lnorm Lguide Lml AVG
1 ✓ ✓ 29.5
2 ✓ ✓ ✓ 36.6
3 ✓ ✓ ✓ 44.1
4 ✓ ✓ ✓ 41.6
5 ✓ ✓ ✓ ✓ 46.5
6 ✓ ✓ ✓ ✓ 43.6
7 ✓ ✓ ✓ ✓ 44.3
8 ✓ ✓ ✓ ✓ ✓ 46.9

Table 3. Ablation studies of different components of final loss
function on the THUMOS’14 testing set. AVG is the average mAP
at the IoU threshold 0.1:0.1:0.7.

are basic objective functions of the framework and should
not be removed. We observe that Lnorm, Lguide, and
Lml all contribute to the final performance. Among them,
Lguide largely enhances the performance since it encour-
ages the background class activation to be opposite of at-
tention weights AFlow

n and ARGB
n , and therefore improves

the action-background separation [12].
Ablation Study on TFE-DC Module. The TFE-DC Mod-
ule is to generate enhanced optical flow features and tem-
poral attention weights. Its key component is the K-layer
dilated convolution network, which enlarges the receptive
field and captures the temporal dependencies between snip-
pets. However, if the receptive field is too large, it may
cover too many irrelevant background snippets, resulting in
performance degradation. To verify the effectiveness of the
TFE-DC Module with different numbers of dilated convo-
lution layers, we conducted related ablation studies.

Table 4 lists the detailed performance comparison among
the model with different numbers of dilated convolution lay-
ers. Here K = 0 means the module outputs the initial

K mAP@IoU (%) AVG
0.1 0.3 0.5 0.7 0.1:0.5 0.1:0.7

0 70.2 55.0 38.1 14.4 54.6 44.8
1 71.3 56.4 38.4 12.9 55.6 45.3
2 71.6 57.3 39.2 13.1 56.3 45.8
3 72.3 58.6 40.7 13.7 57.5 46.9
4 71.7 57.2 38.8 13.1 56.1 45.7

Table 4. Ablation studies of our model with different numbers of
dilated convolution layers K on the THUMOS’14 testing set.

optical flow features without any enhancement and directly
feeds initial features into the filtering module to obtain tem-
poral attention weights. The results show that performance
first increases with the number of dilated convolution lay-
ers and then decreases. The best average performance is
achieved when K = 3. This is because when K = 3, the re-
ceptive field covers 9 snippets. Since each snippet contains
16 frames and the frame rate of samples is 25, the receptive
field covers temporal information within 9×16

25 = 5.76 sec.
The average duration of all action instances in the THU-
MOS’14 testing set is about 4.49 sec. If K is lower than
3, the receptive field cannot completely cover the temporal
span of most action instances. If K is higher than 3, the re-
ceptive field may cover too many background snippets and
reduce the impact of action instance snippets. This trade-
off of covering complete action instances while reducing
background snippets makes K = 3 the optimal value. The
variation trend presented in Table 4 demonstrates the effec-
tiveness of our TFE-DC Module.
Ablation Study on Modality Enhancement Module. In
our proposed Modality Enhancement Module, RGB fea-
tures are enhanced with the help of enhanced optical flow
features. As shown in Fig. 4, we utilize a sharing convolu-
tion layer on initial RGB features XRGB

n and enhanced op-
tical flow features XFlow∗

n to generate two weights. Then
we enhance initial RGB features XRGB

n with these two
weights by element-wise multiplication. To verify the ef-
ficacy of our Modality Enhancement Module, we evaluate
the different kinds of modality combinations.

Table 5 lists the performance comparison between mod-
els with different kinds of modality combinations. From
top to bottom, “Original RGB” means the module directly
outputs initial RGB features XRGB

n without any enhance-
ment. “RGB Only” means that the module uses RGB self
attention weights to enhance RGB features, i.e. XRGB∗

n =
σ(fconv(X

RGB
n )) ⊗ XRGB

n . “Flow Only” means that the
module only uses enhanced optical flow to enhance RGB
features, i.e. XRGB∗

n = σ(fconv(X
Flow∗
n ))⊗XRGB

n . “Not
Sharing” means that we employ convolution layer fconv1 on
XRGB

n and fconv2 on XFlow∗
n , and these two convolution

layers do not share parameters. “Exchange Modalities” on
the last row means we exchange XRGB

n and XFlow
n shown
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Figure 5. Qualitative visualization of two typical video examples from THUMOS’14. The results of BaS-Net (baseline), our method, and
ground truth (GT) are shown in blue, red, and green, respectively. Since we introduce an auxiliary class for background in TCAS, we set
the activation score to be 0 if the background class of this snippet gains the highest activation score among all classes.

Modality mAP@IoU (%)
0.3 0.5 0.7 AVG

Original RGB 54.9 37.5 13.2 44.1
RGB Only 56.6 39.1 13.3 45.4
Flow Only 57.7 38.8 13.4 45.9

RGB + Flow
(Not Sharing) 57.9 39.7 13.1 46.5

RGB + Flow
(Sharing Conv) 58.6 40.7 13.7 46.9

Exchange
Modalities 53.3 36.5 12.2 43.2

Table 5. Ablation studies of our model with different kinds of
modality combinations on the THUMOS’14 testing set. AVG is
the average mAP at the IoU threshold 0.1:0.1:0.7.

in Fig. 2 while keeping other settings the same with “Shar-
ing Conv”.

We can find that XFlow∗
n does enhance the RGB features,

improving the average mAP (0.1:0.7) from 44.1% (“Orig-
inal RGB”) to 45.9% (“Flow Only”). This is because the
initial RGB features contain task-irrelevant information that
hinders performance and XFlow∗

n can help filter out task-
irrelevant information. But only using XFlow∗

n to coordi-
nate XRGB

n may lose spatial information. Therefore, us-
ing both modalities to enhance RGB features achieves the
best results. When it comes to the performance difference
between “Sharing Conv” and “Not Sharing”, it is because
the inconsistency between the two modalities will cause the
degradation of performance, while the sharing convolution
layer is beneficial to make weights distributions of the two
modalities more approached. The performance degrada-
tion caused by “Exchange Modalities” shows that temporal
modeling (TFE-DC Module) should be applied to optical
flow features rather than RGB features. According to the
above analysis, our proposed Modality Enhancement Mod-
ule is reasonable for enhancing RGB features.

4.4. Qualitative Results

To illustrate the efficacy of our proposed method, we
demonstrate the detected results of two typical video sam-
ples in Fig. 5. These two samples are representative be-
cause the first example contains category ‘CricketBowling’
and ‘CricketShot’ and each action instance of these two cat-
egories is extremely short (about 0.6 sec). While the second
example contains the category ‘HighJump’ and each action
instance of this class is relatively long (about 6.1 sec). BaS-
Net is used as the baseline because our model follows its
background suppression structure and uses its loss functions
as basic loss functions during optimization. It can be ob-
served that our method has more accurate localization pro-
posals than the baseline, indicating our method effectively
utilizes temporal information. For instance, in the second
example, the baseline method incorrectly combines several
action instances into one. While our method can localize ev-
ery action instance very clearly. Meanwhile, the activation
scores of background snippets are quite low, showing that
our method can successfully suppress the activation scores
of background snippets and separate action instances from
backgrounds. These two typical samples fully demonstrate
the superiority of our method.

5. Conclusions

In this paper, we explore how to effectively use tem-
poral information and enhance features to improve tempo-
ral action localization results. We propose a novel WTAL
framework named TFE-DCN to tackle the issue. We use
the TFE-DC Module to enlarge the receptive field and cap-
ture long-range dependencies between snippets to enhance
optical flow features. We also propose a Modality Enhance-
ment Module to enhance RGB features with the help of en-
hanced optical flow features. Experiments on two datasets
demonstrate that our TFE-DCN outperforms current state-
of-the-art methods, and validate our idea that the efficient
use of temporal information can significantly improve the
performance of temporal action localization.
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