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Abstract

Skeleton-based action recognition receives increasing
attention because skeleton sequences reduce training com-
plexity by eliminating visual information irrelevant to ac-
tions. To further improve sample efficiency, meta-learning-
based one-shot learning solutions were developed for
skeleton-based action recognition. These methods predict
by finding the nearest neighbors according to the similarity
between instance-level global embedding. However, such
measurement holds unstable representativity due to inad-
equate generalized learning on the averaged local invari-
ant and noisy features, while intuitively, steady and fine-
grained recognition relies on determining key local body
movements. To address this limitation, we present the Adap-
tive Local-Component-aware Graph Convolutional Net-
work, which replaces the comparison metric with a focused
sum of similarity measurements on aligned local embedding
of action-critical spatial/temporal segments. Comprehen-
sive one-shot experiments on the public benchmark of NTU-
RGB+D 120 indicate that our method provides a stronger
representation than the global embedding and helps our
model reach state-of-the-art.

1. Introduction

Action recognition is one of the computer vision prob-
lems that are practically important for realizing modern ap-
plications such as auto surveillance systems [31], video re-
trieval [7], etc. Past research majorly focuses on RGB-
based inputs due to their wide accessibility. Yet, pixel-based
inputs have a high risk of information over-richness, making
a model easily confused by the task-irrelevant background,
brightness, and color changes [28]. A 3-D Skeleton Se-
quence becomes one of the strong input alternatives [24]
because it only records 3-d body joint movements along
temporal evolution [3, 13, 26].

Figure 1. Frame examples for “Putting on a cap” (i) and “Hitting
another person with something” (ii) in NTU-RGB+D 120 [13]. To
fastly adapt to a valid recognition, we expect the model to prior-
itize the similarity discrimination for the movements in the green
blocks and suppress the noisy features from the red blocks.

Using deep learning models and vast annotated train-
ing samples, existing skeleton-based solutions implemented
highly-accurate classification for pre-known activities. But
the study on extending prediction to foreign classes is still at
the beginning stage. Known as few-shot learning (FSL), it is
an active research topic to realize fast adaptation to the clas-
sification for new classes with sparse direct supervised ex-
amples. Especially, the situation is called a one-shot learn-
ing (OSL) problem when only one example is available for
each new class. The solutions can effectively help the mod-
els overcome their dependency on data-intensive training
and enable one-time/rare-case learning that is often more
suitable for real-world scenarios [36].

Among current skeleton-based OSL solutions, early
studies first transformed skeleton sequences to signal im-
ages to solve as unified image-based classification [19, 20].
But the transformation deforms the original skeletal struc-
ture and thus causes information loss on the spatial connec-
tivities between neighboring body joints. A more prefer-
able way is to let a model achieve a metric-based OSL by
comparing the similarity of the inputs’ embeddings by na-
tive skeleton-based backbones. The solutions in [13, 25]
respectively achieved different implementations for this but
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their results are still inferior to the signal-based solutions.
During their classification process, encoded features are av-
eragely pooled to generate a single global embedding as an
input’s representation for similarity comparison. With ade-
quate supervised training, such representation could self-
accumulate enough distinction learning for latent action-
invariant features at a global scope. However, for the
sparse examples from few-shot new classes, the generality
of their global embedding can be easily biased with local
features and fails to robustly focus on the necessary invari-
ant features for refined recognition. On the other hand, we
observe that specific local features under body-part-based
partitions or consecutive time sections intuitively separate
action-critical/irrelevant patterns for valid/invalid recogni-
tion clues. As shown in Fig. 1, while generalizing an ab-
stract global pattern across all body joints and frames is dif-
ficult, a linear combination of aligned discrimination on the
patterns in the green boxes should help quickly determine
a good recognition. Similarly, the patterns in the red boxes
are apparently non-action relevant and the measurements on
their embedding become learning noises that should be di-
rectly suppressed to reduce representation bias.

In this paper, we propose Adaptive Local-Component-
aware Graph Convolutional Network (ALCA-GCN) as
the first metric-based method that relies on local embed-
ding distancing as the main determinant factor for one-
shot skeleton-based action recognition. It decomposes the
instance-level similarity comparison to a selective sum of
local measurements for every body part under each time
section. To achieve this, we start with an encoding back-
bone that extracts hierarchical spatial-temporal features for
both body-part-level patterns and skeleton-level contexts.
Our embedding function then performs average pooling
over the encoded features, which generates the indepen-
dent comparing unit representation for each segmented lo-
cal component. When calculating the total similarity, our
model sequentially aggregates the embedding distance of
each aligned unit between the given support and query in-
puts, and applies an adaptive emphasis/suppression for the
decision impact from the action-critical/noisy units. We
evaluate our solution on NTU-RGB+D 120 [13] and use the
official OSL testing protocol to compare with all previous
related papers [13, 19, 20, 25]. The result proves that our
model achieves state-of-the-art performance. Concretely,
our contributions are:

• We propose ALCA-GCN as a novel metric-based OSL
solution for skeleton-based action recognition. It mod-
els an action as a matrix of local comparable units on
both spatial (body parts) and temporal dimensions (av-
erage time sections).

• ALCA-GCN determines the total similarity between
two skeleton sequences by a selective sum of embed-

ding distances between all aligned comparing units.

• During the similarity aggregation, ALCA-GCN self-
learns the emphasis/suppression against the compar-
ison importance from action-critical/irrelevant units.
The model presents better results than the prior art un-
der an extensive one-shot learning experiment setup
using NTU-RGB+D 120.

2. Related Work
2.1. RGB-based Image/Video FSL

Being the primary experimental ground for FSL, many
solutions have been developed for image classification,
systematically divided into data-based, model-based, and
meta-learning-based approaches [36]. Especially, as one of
the meta-learning-based methods, metric-based learning is
sharply focused due to its simple structure and flexible com-
ponent scalability. In 2017, Snell et al. [27] proposed one
of its major frameworks, which classifies according to the
nearest Euclidean distances between queries and class pro-
totypes in a well-generalized common embedding space. To
align the training feature distribution to true few-shot test-
ing tasks, Vinyals et al. [34] devised the episodic learning
strategy which trains a model by a multi-tasking learning
procedure. During a training epoch, each sub-task simu-
lates the same N-way-K-shot setting from the testing con-
ditions (i.e. having K reference instances for N candidate
classes). Based on the above learning framework, various
solutions are further designed to improve the few-shot gen-
eralization ability for each component, including enriching
embedding features with external knowledge (e.g. seman-
tic [4]), devising local-descriptor-based similarity matching
[11, 39], empowering learning ability to metric functions
[9, 21], etc.

FSL for RGB-video-based action recognition requires
additional learning on the temporal dimension. Tan and
Yang [29] first regarded this as a variant of image classifi-
cation by compressing the input videos into static dynamic
images. It was not until the breakthrough of deep volumet-
ric extraction tailored for video features [8, 32], that many
papers [6, 37, 40, 41] started to adopt the new backbones
with common FSL frameworks. The difficulty of generaliz-
ing a video-based embedding space comes from the expo-
nential increase of sample variance and backbone volume
[33] due to the dimension expansion. Thus recent papers
started to look for alternatives that figure the total similarity
of extracted features in non-parametric ways. In 2021, Ben-
Ari et al. [1] presented a metric-based solution in which the
similarity between a query and generated class prototypes
is measured by the sum of feature differences in averagely
divided time sections. Cao et al. [2] applied Dynamic Tem-
poral Warping (DTW) to orderly aggregate the similarity
between the closest embedding match for every frame in

6039



two videos. While such local comparison is temporally de-
composable according to a sub-action order, pixel-based in-
puts are hard to define meaningful and stationary geograph-
ical partitions for spatial local features of a frame. On the
other hand, a performer’s skeletal description maintains an
invariant graph structure over time, persisting with explicit
component meaning for each body part.

2.2. Skeleton-based Action Recognition

Research on the deep feature extraction of skeleton se-
quences is steadily developed in the past few years. Re-
garding action recognition as a temporal modeling prob-
lem, early solutions adopted RNN/LSTM-based extraction
by sequentially feeding frame-level body joint data and pre-
dicting according to the accumulated learning status in the
last frame [12, 14]. [35] refined spatial encoding with an-
other parallel RNN model by establishing sequential con-
nectivity among body joints according to a pre-defined
traversing path. Since recursive networks are not compet-
itive for their spatial modeling ability, [5] replaced the en-
coder with a CNN that parallelly convolutes the features
from linearly-arranged adjacent body joints and frames. In
2018, research reveals that the kinetic dependencies in body
joints’ native multi-neighbor connections transmit more in-
tegral and abundant spatial information. Yan et al. [38]
proposed a Spatial-Temporal Graph Convolutional Network
(ST-GCN), which supports temporal and spatial feature
convolution based on an adaptive multi-neighbor sampling
scheme. The original scheme only convolutes spatial fea-
tures from body joints’ global relative distances to the body
center. In 2019, Li et al. [10] proposed a more diversified
dependency learning from the hybrid relations of multi-hop
local natural connections and action-based inference con-
nections. Parsa et al. [22] raised a cascaded pyramidal
architecture to additionally capture feature correlation at a
body-part-level scope and average the predictions at differ-
ent granularity. In our work, we also designed a hierarchi-
cal but parallel convolution to obtain independent and richer
representation for local partitions from their own informa-
tion and skeletal contexts.

2.3. FSL in Skeleton-based Action Recognition

In the existing solutions, the topic is first tackled by
Liu et al. [13], who implemented a Euclidean-distance-
based similarity comparison on a sharing global embed-
ding space by an ST-LSTM backbone [14]. To compen-
sate for the generalization insufficiency, it imports external
pre-trained knowledge on the semantic relations between
body joint names and instance labels. The relevance scores
re-assign the contribution weights of body-joint-level fea-
tures towards global embedding to emphasize class-related
learning. [25] convolutionally extracted features from the
normalized body-joint coordinate average for each frame,

and regarded the features from the last frame as the repre-
sentation for instance-level similarity comparison. [19, 20]
devised a pre-processing module that transforms skeleton
sequences into signal images by lining up body joints as
rows and frames as columns. To maintain a matrix for-
mat, the compression has to diminish the parallel neigh-
boring relations between multiple body joints into linear
connections, which brings information loss. [18] recently
proved that maximally preserving disentangled joint-level
spatial features is beneficial to increase representation di-
versity and recognizability for few-shot classes. Trading off
between the clustering consistency of pooling embedding
and the information richness of local encoding, our method
decomposes the similarity metric to a sum of local com-
ponent measurements. Additionally, it adaptively empha-
sizes discrimination learning on action-critical areas, while
removing comparing diversity and bias brought by strong
but action-irrelevant local features.

3. Method
Fig. 2 presents the architecture of ALCA-GCN. Our

method follows the basic framework of metric-based so-
lutions, consisting of an encoding backbone, an embed-
der for modeling the representation matrix, and a linear-
metric-based classifier. To remove viewpoint variances, we
first unite all inputs to a frontal viewing angle (see Section
4.2). We adopt an ST-GCN [38] network F as the proto-
type encoding backbone because it allows spatial feature
convolution over each body joint’s multiple neighbors fol-
lowing a pre-defined (sub-)structure. Maintaining its orig-
inal skeleton-level convolution, we additionally devise in-
dependent kernel matrices for body-part-level convolution.
The modified F now captures each joint’s surrounding fea-
tures under its belonging body part and relative global re-
lations at the skeleton scope. We use F to obtain the to-
tal feature f from a pre-processed input x and pool it as
a part-based global representation Gf , which contains a
group of local embedding gf for 4 body parts (head, hands,
torso and legs) under 3 temporal sections. They are re-
garded as the basic comparing units for local similarity
matching. To enhance/suppress the distinction learning on
action-critical/irrelevant components, an Adaptive Depen-
dency Learning (ADL) module is attached behind Gf to
adaptively adjust each unit’s content influence to the global
matching result. An average global embedding is also ag-
gregated into each unit as an instance-level constraint to im-
pose intra-class clustering consistency. Finally, trained with
the Euclidean distance sum between all aligned units of the
given query and its belonging class support example, the
model learns to classify with a strong reliance on the simi-
larity of action-critical local patterns. The differences from
the noisy units are amended by supplementing their origi-
nal embedding with other high-attention contexts. The rest
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Figure 2. The overview of ALCA-GCN. Each input x is first pre-processed as frontally viewed. The encoder F applies two types of
convolution on x for body-part-level surrounding and skeleton-level contextual features. The embedding network then partially pools the
encoded feature f to generate the embedding of comparing unit gf for R body parts under 3 time sections per each skeleton. Concatenating
all gf together forms the complete global representation Gf for describing x. The ADL module highlights the contextual impact from
action-critical units based on a self-attention mechanism, and the instance-level constraint fglob is aggregated to each modified unit to
impose intra-class clustering. Eventually, the total similarity between a support sample xs and a query sample xq is determined by the
element-wise local measurements on their representation G′

fq and G′
fs .

of the section further describes the details of each model
component.

Figure 3. Neighbor sampling scheme for spatial convolution in
ALCA-GCN. Local receptive fields cover the feature convolution
on 4 body-part-based neighbor areas, including (i) head, (ii) torso,
(iii) hands, and (iv) legs. The limbs are symmetrically grouped to
avoid handedness disparities. The global receptive field (v) from
[38] convolutes on every joint’s root, centrifugal, and centripetal
neighbors (figured by their global distances to the body center).

3.1. Encoding architecture

We denote an input skeleton sequence as xorig ∈
RC×T×U×M , where M refers to the number of performers,
U refers to the number of body joints for one performer, T
refers to the number of frames, and C refers to the number
of body joint coordinate dimension (usually is 3). Obtain-
ing the adjusted input x ∈ RC×T×U×M from the frontal-
viewing pre-process, F first encodes it as M individual se-
quences x′ ∈ RC×T×U and later concatenates them back
before feeding them to the embedding network.

In the original ST-GCN [38], x′ is represented as a graph
of {V, E} that includes every body joint from all frames.
Concretely, V = {v|v ∈ RC} and |V| = U × T . E
consists of the physical and temporal connections as E =

{(vi, vj)|(vi, vj) ∈ H} ∪ {(vti , v
t+1
i )|t ∈ (0, T )} where

H includes all naturally adjacent body joint pairs in each
frame, and (vti , v

t+1
i ) refers to the temporal pair connec-

tion of the same body joint vi between the adjacent frame
t and t + 1. Feature extraction is applied via iterative spa-
tial and temporal graph convolutions. A spatial convolution
layer contains two groups of learnable matrices {W}KS

k

and {E}KS

k . Given an input f ′ ∈ RC′×T ′×U from a pre-
vious or input layer, for its spatial sub-feature f ′in ∈ RC′×U

at each t′ ∈ T ′, its convolution is calculated as:

f ′out =
∑KS

k
Wk(f

′
in × (Ak ⊙Ek)) , (1)

Ak = Λ
− 1

2

k ĀkΛ
− 1

2

k , (2)

Λmn
k =

{∑Bi
k

j (Āmj
k ), if m = n

0, otherwise
, (3)

where KS = L × R is the total number of applied convo-
lutions. Wk is the k-th convolution matrix with a shape of
C ′′×C ′×1×1, where C ′′ is the layer output dimension. Ek

is a U×U matrix for re-weighting the neighbor features fil-
tered by Ak. ⊙ is a dot product operation. Λk is the degree
matrix of Āk to apply degree normalization in Equation (2).
Āk is a pre-defined U×U adjacency matrix for convolution
k, where Āij

k indicates whether vj belongs to the convolut-
ing area Bi

k for vi. ST-GCN regards a skeleton as a single
complicated graph that spreads around a body center joint
[38]. By measuring the distances to the spine, it categorizes
each joint’s physical neighbors into three global relation
types R, known as Centrifugal, Centripetal and Root (i.e.
itself). To apply a one-kernel convolution, Ār records every
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joint’s adjacency status of whether it is a neighbor of type r
(r ∈ R) for each body joint. The convolution for each joint
is then sampled from its corresponding R neighbors orderly
filtered by the matrix multiplication with {Ār|r ∈ R}.

Since our model focuses on the class-level representabil-
ity under local sub-areas (body parts), except for the joint
features from the global position relations to the body cen-
ter, we also value each joint’s relative surrounding features
under its belonging body part. We get inspiration from [30]
and devise extra Ā to respectively filter a body joint’s neigh-
bor features from all local connections under its belonging
body part (see Fig. 3). For a certain body part Pr, Ār filters
the convoluting area Bi

r of vi by:

Bi
r = {vj |d(vi, vj) ≤ 1, vi, vj ∈ VPr} , (4)

Āij
r =

{
1, if vj ∈ Bi

r

0, otherwise
, (5)

where d(vi, vj) denotes the minimum path between vj and
vi. VPr is the set of body joints included in Pr. Edging
joints between any two adjacent body parts are overlap-
pingly included in both partitions, so that all Ār for local
sampling cover every natural skeletal connection. A spa-
tial convolution layer eventually applies L-kernel groups of
convolution on 4 body-part sub-graphs and 1 global skele-
ton graph. Thus there would be overall KS = L×5 parallel
convoluting operations, and the weights for each convolu-
tion are learned with its own Wk and Ek.

For a temporal convolution layer, given an input f ′ from
its previous spatial layer, we remain a 3×1 convolution [38]
on its temporal sub-feature f ′in ∈ RC′×T ′

at each vi ∈ V .
The convoluting area for vt

′

i is the sub-features of vi at t′−1
and t′ + 1.

At the end, F outputs f = F (x) ∈ Rdfeat×Tfeat×U×M

after concatenating back M performers’ features. dfeat and
Tfeat are the encoding sizes on spatial and temporal dimen-
sions for each body joint of every performer.

3.2. Part-based Global Representation

Having f , we apply a segmented mean pooling on the
corresponding body joints and temporal dimensions to get
the local embedding gPm

ri
for each body part Pr of per-

former m at a temporal section i. Beyond the same body
part partitioning in Fig. 3, we averagely divide 3 temporal
sections, known as the starting, middle, and ending phases.
Therefore:

gPm
ri

=
1

|VPr
||Ti|

∑VPr

v

∑Ti

t
fmvt , (6)

Ti = {t|t ∈ ((i− 1)× Tdiv , i× Tdiv ]} , (7)

where R = 4 is the number of partitioned body parts for a
performer, and Tdiv = Tfeat/3 is the length of each tempo-
ral section. All gPm

ri
are then concatenated to generate the

matrix Gf as the instance-level global representation for x.

To obtain the similarity metric between two inputs, we
regard each gPm

ri
as the embedding of a local comparing

unit, and successively aggregate the Euclidean distances
between each aligned unit in the two object sequences.
In a one-shot learning scenario and if using the episodic
learning algorithm [34], for each epoch, the model meta-
trains from a batch of sub-tasks randomly sampled from
the auxiliary set. Each sub-task has the same N-way-1-
shot setting consistent with the testing task. Having an in-
coming training/testing query input xq and some support
instances {(xs1 , s1), (xs2 , s2), ..., (xsP , sP )} for candidate
classes s1, s2, ..., sP , the classification of xq is the same cat-
egory as its most similar support instance xsmin according
to the comparing metric. In other words, the model predicts
the probability distribution of xq belonging to class sn via:

pϕ(yq = sn|xq) =
exp(−d(xq,xsn))∑P
p=1 exp(−d(xq,xsp))

, (8)

d(xq,xsp) = d⟨Gfq ,Gfsp ⟩

=
∑3×R×M

j
∥gj

fq
− gj

fsp
∥2
, (9)

for all n = s1, s2, ..., sP with the model parameter ϕ.
d(·, ·) refers to the similarity distance between the two
comparing instances. d⟨·, ·⟩ is the actual metric function
to calculate the total similarity aggregation between their
global representation, which is the sum of Euclidean dis-
tances between every pair of aligned comparing unit gj

fq

and gj
fsp

. During training, the model optimizes ϕ by a
negative log-probability loss of Lϕ = − log pϕ(yqtrain =
yqtrain |xqtrain ) from the predicted probability for the true
class yqtrain ∈ {s1train , ..., sPtrain} of xqtrain . During test-
ing, having a trained model parameter ϕ′, the class spred
which meets pϕ′(yqtest = spred |xqtest ) = max{pϕ′(yqtest =
sn|xqtest )|n ∈ {s1test , ..., sPtest

}} will become the predicted
class for xqtest .

3.3. Adaptive Dependency Learning (ADL)

The classification up till now determines the total sim-
ilarity by an unbiased sum of embedding distances from
all comparing units. It equalizes the decision impact of lo-
cal comparison from action-critical/noisy sub-areas, which
hampers the generalization process of correct classifica-
tion. To emphasize the learning reliance on the former
and avoid the negative learning from the latter, we design
a self-attention-based module ADL to distribute the contex-
tual significance for each comparing unit. As shown in Fig.
4, we prepare three parametric matrices, known as the value
head V : Rdfeat × Rdfeat , the key head K : Rdemb × Rdfeat

and the query head Q : Rdemb × Rdfeat , where demb is the
output embedding size. After calculating KGf

= K · Gf ,
QGf

= Q · Gf and VGf
= V · Gf for a global repre-
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Figure 4. ADL module learns to adaptively distribute contextual
comparing focus for each unit on action-related local embedding
content.

sentation Gf , we generate a matrix of normalized attention
scores AGf

which captures the action-based contextual de-
pendency for each unit on every other unit in Gf . Using
the scores as the weights, the new content of a comparing
unit g′

f is a weighted sum of the value-head output from its
original embedding in gf and every other comparing unit.
To express this as matrix-level operations:

AGf
=

exp((KGf
·QGf

)/
√
demb)∑3×R×M

j=1 exp((KGf
·QGf

)/
√
demb)

, (10)

G′
f = AGf

⊗VGf
+C. (11)

where ⊗ refers to the Hadamard multiplication. Pure lo-
cal embedding representation clusters weakly for intra-class
samples. Thus we remain the global average embedding
fglob = 1

Tfeat×U×M

∑Tfeat

t=1

∑U
v=1

∑M
m=1 f

m
vt from all body

joints and temporal feature dimensions as a simple instance-
level constraint and add it into each unit by an expan-
sion matrix C. We now jointly train the attention matri-
ces and the feature encoder together in an end-to-end man-
ner. Eventually, when figuring the new embedding for each
unit, the original features from action-critical units would
not only be persisted in their units but also be transmit-
ted to other units as high-attention contextual supplements
because they contain more invariant information for cor-
rect classification. On the other hand, the new embedding
for the units whose original features are low-attention (i.e.
noisy) would suppress their old information and be more
amended by the contextual features from their correlated
high-attention units or global embedding. Eventually, this
promotes a targeted learning direction that emphasizes the
decision weights of similarity measurements according to
the native and contextual features from action-critical units,
and suppresses the impacts from action-noisy units.

4. Experiments
Aligning to [19], we evaluate our model on the NTU-

RGB+D 120 dataset [13] which provides large-scale ac-
tion recognition scenarios. According to its official protocol
[13], the dataset is split into an 100-class auxiliary set and
a 20-class evaluation set with non-overlapping classes, and
each class in the evaluation set has only one reference sam-
ple. Our experiments are developed in two stages. One is
the standard performance examination based on its one-shot
testing protocol, checking the model’s general performance
trained from the full auxiliary set and its corresponding
learning efficiency under different reduced auxiliary sizes.
We compare our outcomes with the results in all previous
related papers and analyze the difference between them and
our model. Secondly, we carry out the ablation study to
determine the exact learning effect brought by each model
component.

4.1. Dataset and Evaluation Protocol

The NTU-RGB+D 120 [13] dataset is a large ac-
tion recognition dataset that contains 114,480 skeleton se-
quences of 120 action classes from 106 subjects in 155
different camera views. The action labels range from
daily/health-related individual or mutual actions. Obtained
by Kinect depth sensors, each sequence provides real-world
3-d coordinates of 25 body joints for each skeleton (of up
to 2 attending performers). Our model needs to first get
trained on the available auxiliary set to provide a general
common embedding space for any newly coming action
class. During the testing stage, our model predicts the evalu-
ating samples by finding their nearest class reference neigh-
bors according to the local-component-based comparison
between their embedding representation. For the general
performance examination, we use the whole 100-class aux-
iliary set to train our model. For the auxiliary reduction
experiment, aligning to the benchmarks in [13], we apply
a variable control on the auxiliary class size in a range of
20, 40, 60, 80, and 100. For the ablation study, we maintain
the same experiment settings under different auxiliary sizes
but apply them to the different versions of our model with
respective variable control on each specific component.

4.2. Implementation Details

The model is implemented in PyTorch [23]. To
unify the sequence temporal length, we apply an average-
frame-sampling/zero-padding for the skeleton sequences
longer/shorter than 75 frames (the mode value for the dis-
tribution from all original lengths). For the frontal-viewing
pre-process, we borrow the algorithm from [17] and regard
the first actor’s facing direction in the first frame as the stan-
dard frontal direction to the camera throughout a sequence.
Concretely, the facing is calculated as the orthogonal direc-
tion for the direction from the skeleton’s left hip to its right
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Approach Accuracy
Attention Network [16] 41.0
Fully Connected [16] 42.1
Average Pooling [15] 42.9

APSR [13] 45.3
TCN [25] 46.5

SL-DML [20] 50.9
Skeleton-DML [19] 54.2

ALCA-GCN (Episodic) 57.6
ALCA-GCN (Traditional) 55.0

Table 1. General 1-shot action recognition results (%) on NTU-
RGB+D 120 with full training on all 100 auxiliary classes.

hip and the direction from its central hip to its spine. Then
the 3-d location of every body joint in all the frames is ver-
tically rotated to transform to the coordinate system under
the new viewing angle. Apart from the convolution sam-
pling strategy, our feature encoder is aligned to [38], com-
posed of 10 iterative blocks of spatial and temporal convo-
lution layers. For each spatial convolution layer, L is set
to be 1. The output dimension for each block evolves as
64× 4 → 128× 3 → 256× 3. The embedding dimension
in ADL is 256. We conduct each experiment with a max-
imum training of 100 epochs on 2 NVIDIA P100 GPUs,
and apply early stops when the validating accuracy doesn’t
improve in the latest 10 epochs. An Adam optimizer and co-
sine annealing are used to schedule the learning rate with a
starting value of 10−3 and the weight decay of 10−6. Dur-
ing training, we mainly adopt the episodic learning algo-
rithm (see Section 3.2), in which each training-use sub-task
has the same 20-way-1-shot setting from the testing proto-
col. As a controlled experiment, we also attempted training
our model under a traditional style, in which the model is
trained by normal batch learning with a batch size of 64. For
the encoded feature f of an input example, we performed a
global average pooling on G′

f to get a 256-dimension fea-
ture vector and then connected it with a SoftMax classi-
fier to train the model by the standard cross-entropy loss.
During testing, we disconnected the classifier and used the
trained encoder, embedder and ADL to perform the same
nearest-neighbor-based classification as episodic learning.

4.3. Results

General and Training Set Size Reduction. Table 1
presents our model’s general performance for the given
1-shot task, compared to the available solution results in
[13, 15, 16, 19, 20, 25] under the same testing protocol. Ta-
ble 2 and Fig. 5 present our model’s corresponding learn-
ing efficiency under different auxiliary sizes, compared to
the available results in [13, 19, 20]. The solutions in
[13, 15, 16, 25] all use certain global average embedding
for similarity comparison, while [19, 20] transform skeleton
sequences into signal images. The outcomes show that our
model learned by either training strategy always performs

# Training Classes 20 40 60 80 100
APSR [13] 29.1 34.8 39.2 42.8 45.3

SL-DML [20] 36.7 42.4 49.0 46.4 50.9
Skeleton-DML [19] 28.6 37.5 48.6 48.0 54.2

ALCA-GCN (Episodic) 38.7 46.6 51.0 53.7 57.6
ALCA-GCN (Traditional) 45.0 49.8 50.4 50.7 55.0

Table 2. 1-shot action recognition results (%) on NTU-RGB+D
120 with different auxiliary training set sizes.

better than the existing solutions under any auxiliary con-
dition. Concretely, our model trained by traditional learn-
ing outperforms the previous state-of-the-art in [20] with a
margin of 8.3% and 7.4% for the auxiliary size of 20 and
40, and our model trained by episodic learning outperforms
[19, 20] by a margin of 2.0%, 5.7%, 3.4% for the auxil-
iary size of 60, 80 and 100. We find that traditional training
provides more efficient embedding learning for our model
under low auxiliary supports probably because at this mo-
ment the training already simulates a similar learning sam-
ple distribution to the evaluation task (a 20-way classifica-
tion), and its larger training batch helps our model more
easily get out of local minimum and find the optimal pa-
rameters. On the other hand, episodic learning presents a
more stable learning increase for a generalized embedding
ability by meta-learning from the gradually abundant auxil-
iary classes. Observing the visualized learning progress un-
der different auxiliary sizes in Fig. 5, we see that both the
global-embedding-based method [13] and our model un-
der traditional training reduce their accuracy improvement
speed when the auxiliary size raises from 40 to 60 or 60 to
80. More seriously, [19, 20] face temporary learning confu-
sion when the auxiliary size raises from 60 to 80, having a
2.6% and 0.6% accuracy drop. Contrastly, our model under
episodic learning demonstrates a steady learning increase,
enlarging the advantage gap when the auxiliary size is 80 or
100. We show more performance differences by confusion
matrices in Suppl. Material.
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Figure 5. Visualized 1-shot accuracy variation on NTU-RGB+D
120 with different auxiliary training set sizes.
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Ablation Study. Table 3 records the ablation study re-
sults on the detailed learning effect brought by each model
component (using episodic learning under the same con-
figuration as the full training). We separate the research
objects into three types of components: convolution sam-
pling strategy, comparing unit division, and instance-
level constraints. For convolution sampling, we examine
the influence of spatial feature extraction under different
scopes by only using the original convolution scheme in
[38] or our body-part-based scheme. For comparing unit
division, we consider the learning efficiency under differ-
ent similarity metrics, including conducting the measure-
ments by global average embedding (labeled as None be-
cause there is no local division), pure spatial-wise compar-
ing units (dividing temporally-averaged features according
to body-part partitions), or pure temporal-wise comparing
units (dividing body-joint-averaged features according to
temporal sections). For instance-level constraints, the study
examines the performance drop when the ADL module or
the global embedding constraint is removed from the origi-
nal ALCA-GCN.

The outcome indicates that the overall best result under
any auxiliary condition is achieved by the full ALCA-GCN.
For the spatial convolution scheme, the visual features col-
lected from either skeleton-based or body-part-based neigh-
bor sampling provide comparable distinction validity for
classification. The full ALCA-GCN concatenates them to
provide a more comprehensive feature description and im-
proves by 1.0%, 2.3%, 4.3%, and 4.2% for the auxiliary
size of 40, 60, 80, and 100. A similar situation also appears
for dividing comparing units only on spatial or temporal di-
mensions. We observe that using global average embed-
ding predicts better than using single-dimensional compar-
ing units by 5.4%, 0.8%, and 1.4% when the auxiliary size
is 40, 80, and 100. But using double-dimensional compar-
ing units in the full ALCA-GCN outperforms using global
embedding under every condition with a respective advan-
tage of 3.8%, 0.8%, 4.8%, 2.6%, 3.3%. Finally, both the
ADL module and global embedding constraints are verified
as positive regulations for our similarity metric. Especially,
the performance boost brought by ADL is the most obvi-
ous. Except for the situation under 20 auxiliary classes,
it steadily provides an increase of 4.4%, 4.4%, 4.8%, and
7.0% when the auxiliary size grows to 40, 60, 80, and 100
classes. Under smaller auxiliary sizes, the models with only
body-part-based spatial convolution or without ADL could
achieve similar learning results to the full model, because
the embedding discrimination for only 20 training classes is
relatively easy. With more abundant and complicated auxil-
iary classes, the model needs to develop its generalized em-
bedding ability with more explicit and refined pattern recog-
nition on potential class-specific movements, in which our
ADL contributes significantly by filtering action-related lo-

# Training Classes 20 40 60 80 100

Sampling strategy Body-part-based 38.7 45.6 45.7 49.2 53.4
Skeleton-based 37.5 43.3 48.7 49.4 51.6

Division strategy
None 34.9 45.8 46.2 51.1 54.3

Spatial-wise 31.4 40.4 47.4 50.3 52.9
Temporal-wise 35.5 40.2 44.2 46.5 50.0

Constraints Without ADL 38.6 42.2 46.6 48.9 50.6
Without global constraints 31.3 45.8 47.1 51.6 55.1

ALCA-GCN 38.7 46.6 51.0 53.7 57.6
Table 3. Ablation study (%) on NTU-RGB+D 120 for each com-
ponent in our proposed model.

cal features. Despite the benefits, a limitation of our model
is that the action is matched in the fixed skeleton order in
a video (i.e. it assumes that an action is performed by the
performers in the constant order). While in real cases, an
action could be performed by different people. Global rep-
resentations average all features from involved performers
and thus do not have this issue. This requires further re-
search on the solution of adaptively detecting action refer-
encing order among multiple actors.

5. Conclusion

In this paper, we suggest a novel metric-based solution
for skeleton-based one-shot action recognition. Our method
decomposes the similarity comparison to an adaptive sum
of embedding measurements on the local comparing units
that contain hierarchical body-part-wise and temporal-wise
features. To emphasize/suppress the distinction learning
on action-related/noisy units, our ADL module adaptively
adjusts each unit’s measurement impact according to its
instance-level attention. We examined our model’s general
performance and ablation study under an extensive experi-
ment setup. The results proved that our model outperforms
global-embedding-based and signal-based methods by pro-
viding a more action-representative similarity comparison.
Using episodic learning, the model could steadily develop
its embedding ability by meta-learning from the increased
auxiliary resources while previous methods face a gener-
alization bottleneck. Our solution reveals that the unique
physical properties in skeleton sequences can provide in-
variant structural meanings as acquiescent prior knowledge
to facilitate few-shot learning. Improving our method with
adaptive action referencing and extending it to more gener-
alized scenarios such as crowd activity analysis would be-
come interesting directions to explore in the future.

6. Acknowledgement

This research was undertaken using the LIEF HPC-
GPGPU Facility hosted at the University of Melbourne.
This Facility was established with the assistance of LIEF
Grant LE170100200. MG was supported by ARC
DE210101624.

6045



References
[1] Rami Ben-Ari, Mor Shpigel Nacson, Ophir Azulai, Udi

Barzelay, and Daniel Rotman. TAEN: temporal aware em-
bedding network for few-shot action recognition. In IEEE
Conf. Comput. Vis. Pattern Recog. Worksh., pages 2786–
2794. Computer Vision Foundation / IEEE, 2021.

[2] Kaidi Cao, Jingwei Ji, Zhangjie Cao, Chien-Yi Chang, and
Juan Carlos Niebles. Few-shot video classification via tem-
poral alignment. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 10615–10624. Computer Vision Foundation / IEEE,
2020.

[3] Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. UTD-
MHAD: A multimodal dataset for human action recognition
utilizing a depth camera and a wearable inertial sensor. In
IEEE Int. Conf. Image Process., pages 168–172. IEEE, 2015.

[4] Zitian Chen, Yanwei Fu, Yinda Zhang, Yu-Gang Jiang, Xi-
angyang Xue, and Leonid Sigal. Multi-level semantic feature
augmentation for one-shot learning. IEEE Trans. Image Pro-
cess., 28(9):4594–4605, 2019.

[5] Zewei Ding, Pichao Wang, Philip O. Ogunbona, and Wan-
qing Li. Investigation of different skeleton features for
cnn-based 3d action recognition. In Int. Conf. Multimedia
and Expo Worksh., pages 617–622. IEEE Computer Society,
2017.

[6] Sai Kumar Dwivedi, Vikram Gupta, Rahul Mitra, Shuaib
Ahmed, and Arjun Jain. Protogan: Towards few shot
learning for action recognition. In Int. Conf. Comput. Vis.
Worksh., pages 1308–1316. IEEE, 2019.

[7] Weiming Hu, Dan Xie, Zhouyu Fu, Wenrong Zeng, and
Stephen J. Maybank. Semantic-based surveillance video
retrieval. IEEE Trans. Image Process., 16(4):1168–1181,
2007.

[8] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolu-
tional neural networks for human action recognition. IEEE
Trans. Pattern Anal. Mach. Intell., 35(1):221–231, 2013.

[9] Aoxue Li, Weiran Huang, Xu Lan, Jiashi Feng, Zhenguo Li,
and Liwei Wang. Boosting few-shot learning with adaptive
margin loss. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 12573–12581. Computer Vision Foundation / IEEE,
2020.

[10] Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng
Wang, and Qi Tian. Actional-structural graph convolutional
networks for skeleton-based action recognition. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 3595–3603. Com-
puter Vision Foundation / IEEE, 2019.

[11] Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and
Jiebo Luo. Revisiting local descriptor based image-to-class
measure for few-shot learning. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 7260–7268. Computer Vision Founda-
tion / IEEE, 2019.

[12] Wenbo Li, Longyin Wen, Ming-Ching Chang, Ser Nam Lim,
and Siwei Lyu. Adaptive RNN tree for large-scale human
action recognition. In Int. Conf. Comput. Vis., pages 1453–
1461. IEEE Computer Society, 2017.

[13] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang,
Ling-Yu Duan, and Alex C. Kot. NTU RGB+D 120: A large-

scale benchmark for 3d human activity understanding. IEEE
Trans. Pattern Anal. Mach. Intell., 42(10):2684–2701, 2020.

[14] Jun Liu, Amir Shahroudy, Dong Xu, Alex C. Kot, and
Gang Wang. Skeleton-based action recognition using spatio-
temporal LSTM network with trust gates. IEEE Trans. Pat-
tern Anal. Mach. Intell., 40(12):3007–3021, 2018.

[15] Jun Liu, Amir Shahroudy, Dong Xu, Alex C. Kot, and
Gang Wang. Skeleton-based action recognition using spatio-
temporal LSTM network with trust gates. IEEE Trans. Pat-
tern Anal. Mach. Intell., 40(12):3007–3021, 2018.

[16] Jun Liu, Gang Wang, Ping Hu, Ling-Yu Duan, and Alex C.
Kot. Global context-aware attention LSTM networks for
3d action recognition. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 3671–3680. IEEE Computer Society, 2017.

[17] Mengyuan Liu, Hong Liu, and Chen Chen. Enhanced skele-
ton visualization for view invariant human action recogni-
tion. Pattern Recognition, 68:346–362, 2017.

[18] Ning Ma, Hongyi Zhang, Xuhui Li, Sheng Zhou, Zhen
Zhang, Jun Wen, Haifeng Li, Jingjun Gu, and Jiajun Bu.
Learning spatial-preserved skeleton representations for few-
shot action recognition. https://zhoushengisnoob.
github.io/papers/DASTM.pdf, 2022.

[19] Raphael Memmesheimer, Simon Häring, Nick Theisen, and
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dre Bernardino, Luis Montesano, and Ana C. Murillo. One-
shot action recognition towards novel assistive therapies.
CoRR, abs/2102.08997, 2021.

6046



[26] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.
NTU RGB+D: A large scale dataset for 3d human activity
analysis. In IEEE Conf. Comput. Vis. Pattern Recog., pages
1010–1019. IEEE Computer Society, 2016.

[27] Jake Snell, Kevin Swersky, and Richard S. Zemel. Proto-
typical networks for few-shot learning. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
NeurIPS, pages 4077–4087, 2017.

[28] Zehua Sun, Jun Liu, Qiuhong Ke, Hossein Rahmani, Mo-
hammed Bennamoun, and Gang Wang. Human action recog-
nition from various data modalities: A review. CoRR,
abs/2012.11866, 2020.

[29] Shaoqing Tan and Ruoyu Yang. Learning similarity:
Feature-aligning network for few-shot action recognition. In
Int. Joint Conf. Neural Net., pages 1–7. IEEE, 2019.

[30] Kalpit C. Thakkar and P. J. Narayanan. Part-based graph
convolutional network for action recognition. In Brit. Mach.
Vis. Conf., page 270. BMVA Press, 2018.

[31] Theodoros Theodoridis and Huosheng Hu. Action classifi-
cation of 3d human models using dynamic anns for mobile
robot surveillance. In IEEE Int. Conf. Robot. Biomim., pages
371–376. IEEE, 2007.

[32] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In IEEE Conf. Com-
put. Vis. Pattern Recog., pages 6450–6459. Computer Vision
Foundation / IEEE Computer Society, 2018.

[33] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In IEEE Conf. Com-
put. Vis. Pattern Recog., pages 6450–6459. Computer Vision
Foundation / IEEE Computer Society, 2018.

[34] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray
Kavukcuoglu, and Daan Wierstra. Matching networks for
one shot learning. In Daniel D. Lee, Masashi Sugiyama, Ul-
rike von Luxburg, Isabelle Guyon, and Roman Garnett, ed-
itors, Adv. Neural Inform. Process. Syst., pages 3630–3638,
2016.

[35] Hongsong Wang and Liang Wang. Modeling temporal
dynamics and spatial configurations of actions using two-
stream recurrent neural networks. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 3633–3642. IEEE Computer So-
ciety, 2017.

[36] Yaqing Wang, Quanming Yao, James T. Kwok, and Li-
onel M. Ni. Generalizing from a few examples: A survey on
few-shot learning. ACM Comput. Surv., 53(3):63:1–63:34,
2020.

[37] Yongqin Xian, Bruno Korbar, Matthijs Douze, Bernt Schiele,
Zeynep Akata, and Lorenzo Torresani. Generalized many-
way few-shot video classification. In Adrien Bartoli and
Andrea Fusiello, editors, Eur. Conf. Comput. Vis. Worksh.,
volume 12540 of Lecture Notes in Computer Science, pages
111–127. Springer, 2020.

[38] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In Sheila A. McIlraith and Kilian Q. Wein-
berger, editors, AAAI, pages 7444–7452. AAAI Press, 2018.

[39] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
Deepemd: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 12200–12210.
Computer Vision Foundation / IEEE, 2020.

[40] Hongguang Zhang, Li Zhang, Xiaojuan Qi, Hongdong Li,
Philip H. S. Torr, and Piotr Koniusz. Few-shot action
recognition with permutation-invariant attention. In An-
drea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, Eur. Conf. Comput. Vis., volume 12350
of Lecture Notes in Computer Science, pages 525–542.
Springer, 2020.

[41] Songyang Zhang, Jiale Zhou, and Xuming He. Learning im-
plicit temporal alignment for few-shot video classification.
In Zhi-Hua Zhou, editor, IJCAI, pages 1309–1315. ijcai.org,
2021.

6047


