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Abstract

Neural Radiance Fields (NeRFs), despite their outstand-
ing performance on novel view synthesis, often need dense
input views. Many papers train one model for each scene
respectively and few of them explore incorporating multi-
modal data into this problem. In this paper, we focus on a
rarely discussed but important setting: can we train one
model that can represent multiple scenes, with 360◦ in-
sufficient views and RGB-D images? We refer insufficient
views to few extremely sparse and almost non-overlapping
views. To deal with it, X-NeRF, a fully explicit approach
which learns a general scene completion process instead of
a coordinate-based mapping, is proposed. Given a few in-
sufficient RGB-D input views, X-NeRF first transforms them
to a sparse point cloud tensor and then applies a 3D sparse
generative Convolutional Neural Network (CNN) to com-
plete it to an explicit radiance field whose volumetric ren-
dering can be conducted fast without running networks dur-
ing inference. To avoid overfitting, besides common render-
ing loss, we apply perceptual loss as well as view augmenta-
tion through random rotation on point clouds. The proposed
methodology significantly out-performs previous implicit
methods in our setting, indicating the great potential of pro-
posed problem and approach. Codes and data are available
at https://github.com/HaoyiZhu/XNeRF.

1. Introduction

Neural Radiance Fields (NeRFs) [29] have aroused sig-
nificant research interest recently, which usually implic-
itly encode scenes using coordinate-based multi-layer per-
ceptrons (MLPs) and have a wide range of applications
such as novel view synthesis [1, 7, 29, 44, 50, 51]. A lot
of follow-up work makes efforts to improve and extend
NeRF [29] in various ways from convergence and render-
ing speed [7, 11, 23, 39] to dynamic scenes [10, 21, 46],
etc. Some methods [39, 48, 49] utilize explicit structures to

Figure 1. An illustration of our problem setting. The center
shows an incomplete scene captured by a few low-cost RGB-D
cameras. The small square cones around the scene represent the
locations and directions of cameras and their corresponding RGB
images are shown in surrounding rectangles. Among them, the red
are seen views for training while the green one denotes the unseen
view for testing. The insufficient views are very sparse with less
than 10% to 20% overlapping with each other, making the problem
extremely hard.

gain huge performance improvement but they still directly
encode scenes in learnable network parameters.

Despite the exceptional performance in lots of scenarios,
most of NeRF-like methods need a lot of densely captured
views when training, making them hard or expensive to ap-
ply to practice. Although some work [7, 50] has studied
few-view training, their usual applicable scenarios require
views with small perspective changes and large overlap-
ping. What’s more, most methods usually train a model for
only one scene given the implicit modeling, making it diffi-
cult to apply them to massive scenes. Finally, with the rapid
development of hardwares, depth data is increasingly avail-
able. But most current NeRF-related work only take RGB
modality as input. How to utilize the depth information for
better rendering deserves more exploration.

To this end, in this paper we aim to propose a method-
ology which allows a single model to (i) deal with multiple
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scenes, (ii) with insufficient views that are 360◦ around the
scenes and (iii) incorporate the depth data for better render-
ing. Fig. 1 displays an example of our setting. To tackle this
hard setting, we propose an explicit neural radiance field
(X-NeRF), which can take RGB-D images as inputs. Dif-
ferent from other NeRF-like approaches implicitly mapping
coordinates to colors and densities, we explicitly modeling
this problem as a completion task. The intuition behind
comes from the observation that given a few RGB-D input
images, a large part of the scene is actually known. In other
words, plenty of information is already available initially, so
that we only have to learn a general scene-irrelevant com-
pletion relation. Since the network is designed to encode
a general completion mapping rather than a specific scene,
we can naturally deal with the multi-scene problem.

Specifically, the input RGB-D images are converted to
sparse colorful point clouds and quantized to sparse ten-
sors on which we can directly apply Minkowski Engine [4]
to operate. We adopt a 3D sparse generative CNN to con-
struct and complete the explicit neural radiance fields. Our
backbone applies a UNet-like [34] encoder-decoder struc-
ture with multi-stage generative transposed convolution and
pruning layers in the decoder. To avoid overfitting on seen
views, besides common rendering loss, we also apply per-
ceptual loss with patch-wise sampling as well as view aug-
mentation through random rotation on point clouds. Volu-
metric rendering with post-activation is used. By shooting
and querying a ray from a pixel , the accumulated color and
depth of it can be rendered.

Extensive experiments demonstrate that the proposed
task is extremely challenging for existing methods while our
approach can handle it well. We first compare our approach
with DS-NeRF [7], an advanced NeRF-based work that
also supports depth supervision, and DVGO [39] which is
a state-of-the-art NeRF-like method utilizing explicit struc-
tures, on single scene experiments. To be fair, we add depth
supervision to DVGO [39]. Then we compare X-NeRF with
some recent NeRF-related work that supports multi-scene
training such as pixelNeRF [50] and IBRNet [44] (depth
supervision is also added). The results state clearly that
X-NeRF is robust with multi-scene 360◦ insufficient views
and can produce reliable novel view predictions. Our work
outperforms previous methods on the extreme setting, indi-
cating that X-NeRF can be applied to practice in a low-cost
manner as we can train one model for many scenes while
the inference process is quite lightweight.

2. Related Work
Novel view synthesis. To synthesize a novel view im-

age given a set of images is a classic and long-standing task.
Rendering methods can be mainly divided into image-based
or model-based. Image-based methods [9, 15, 44] directly
learn the transformation on image level such as warping

or interpolation, which are typically more computational
efficient. However, they need reference views during in-
ference and the number and density of reference images
may influence the rendering quality greatly. Model-based
methods [16, 18, 32, 35, 42] express scenes as high di-
mensional representations and apply physically meaningful
models such as optical model [27] to render the novel view
images. There are various forms to represent scenes. Earlier
works apply lumigraph [2, 12] and light fields [5, 19, 20, 36]
to directly interpolate on input images. Nevertheless, they
need exceedingly dense inputs which is totally unafford-
able in many applications. Other methods utilize explicit
representations such as mesh [6, 40, 43, 45] to deal with
sparse inputs. However, mesh-based approaches cannot
work well with gradient-based optimization due to discon-
tinuities and local minima. Recently, many deep learning
based methods employ CNNs to construct multi-plane im-
ages (MPIs) [8, 22, 28, 38, 41, 53] for forward-facing cap-
tures. There are also approaches that encode scenes as vol-
umetric representations [16, 18, 28, 41, 42, 53], but they
often struggles with complex and large-scale scenes.

Neural Radiance Fields. NeRFs have aroused great
interest and achieved huge success in novel view synthe-
sis task in recent years. A classic NeRF [29] learns a di-
rect mapping from coordinates to corresponding textures
such as color and density, implicitly encoding a scene in
MLPs. Since proposed, people have extended NeRF [29]
to a lot of variants with different characteristics including
editable [17, 24, 47], fast inference and/or training [7, 11,
23, 39], deformable [30, 33], unconstrained images [3, 26],
etc. Some recent work [39, 48, 49] introduces explicit struc-
tures to gain great performance enhancement, which indi-
cates that the implicit MLP architecture is not necessar-
ily the key to success. Nevertheless, despite the explicit
voxel grid structures, they are actually still essentially an
implicit modeling, as they still encode the scene informa-
tion in learnable parameters. The implicit modeling makes
NeRF-based methods hard to freely generalize on multi-
scene cases. Though some work such as [50] claims that
they have the ability to deal with multi-scene task, they in
practice can only process multiple small objects or multiple
similar simulated scenes. Moreover, when it comes to the
extreme situation proposed in this paper that the input views
are insufficient, which means the input views are extremely
sparse but 360◦ around the real scenes and have almost no
overlapping (often less than 10% to 20%), the implicit mod-
eling easily overfits to a trivial solution due to its little con-
straints on the scene structure. Some approaches can deal
with few inputs such as [7, 50], but their applicable scenario
is mostly forward-facing captures which is actually still not
sparse enough.

Multi-modal RGB-D data. Nowadays, with the rapid
development of hardware devices, depth modal is becoming
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increasingly common and available. It is often much more
affordable and cheaper to capture few insufficient RGB-D
views than to capture tens or hundreds times more RGB
views as long as we tolerate some reasonable depth errors.1

Therefore, it is significantly important to process RGB-D
inputs and accurately render novel view depth images. Syn-
thesizing perfect novel views from only insufficient 360◦

RGB images is probably ill-posed, but with the additional
depth modal, the problem is wholly solvable. Deng et al. [7]
already make use of depth information, and shows depth
knowledge can greatly avoid overfitting on seen views as
well as benefit the convergence and performance of NeRFs.

3. Preliminaries
NeRF-based methods take as inputs a set of images of

different views and implicitly map 3D coordinates to densi-
ties σ and colors c, encoding a particular scene into network
parameters: f(x,d) = (σ, c). Usually Sigmoid is acted on
c and ReLU or Softplus is acted on σ.

Given a particular camera pose P , to render the corre-
sponding 2D image pixels, we first emit rays r in the di-
rection d from the projection center o of the camera to the
pixels. Then N ordered query points on r between the pre-
defined near and far planes are sampled and fed into model
to obtain their densities and colors {(σi, ci)

N
i=1}, so that we

can integrate them using the optical model proposed by [27]
to derive the rendered pixel color Ĉ(r):

αi = 1− exp (−σiδi) 1 ≤ i ≤ N , (1a)

Ti =

i−1∏
j=1

(1− αj) 1 ≤ i ≤ N , (1b)

Ĉ(r) =

(
N∑
i=1

Tiαici

)
+ TK+1cbg , (1c)

where αi represents the termination probability at point i
and the accumulated transmittance to point i is denoted by
Ti. δi is the sampling step size, i.e., the distance to the adja-
cent sampled point on a ray. cbg is a pre-defined background
color, usually either 0 or 1. Depth rendering is similar to
color rendering, which can be given by:

D̂(r) =

N∑
i=1

Tiαidi , (2)

where di is the distance from the ray’s origin to point i.

4. Method
In this section, we introduce Explicit Neural Radiance

Field (X-NeRF), an explicit representation for novel view
1The average salary in U.S. reaches $53,490 per year and the price of

an Intel RealSense RGB-D camera is only $297.17.

synthesis from multi-scene 360◦ insufficient-view RGB-D
images. Instead of implicitly constructing scenes in neural
network parameters, we consider a fully explicit method-
ology using a 3D sparse generative CNN to learn a gen-
eral scene-irrelevant completion relationship. In the fol-
lowing, we first describe our explicit modeling methodol-
ogy (Sec. 4.1), then the detailed model architecture of X-
NeRF (Sec. 4.2) and finally our volumetric rendering pro-
cess (Sec. 4.3) as well as optimization functions (Sec. 4.4).

4.1. Explicit Modeling

Existing NeRF-like methods are all essentially implicit,
though some such as [39, 48, 23] take use of explicit struc-
tures. In spite of their promising performance in many situ-
ations, implicit models struggle with three challenges. The
first is that when there are insufficient, i.e. extremely sparse
and almost non-overlapping, seen views, they tend to overfit
to a trivial solution since they have no constraints nor pri-
ors on the scene structures. The second is that it is hard for
them to naturally process multiple scenes using one model
as they directly encode the scene information in model pa-
rameters. A few existing NeRF-based methods that support
multi-scene learning either need reference views [44, 50]
whose number and density have impact on the rendering
effect, or employ independent explicit structures before a
shared MLP [23] whose space and time costs linearly in-
crease with the rise of scene number. The third is that
they usually lack the ability to fuse RGB with depth images
which are increasingly popular and available at present.

To this end, we propose a fully explicit approach that can
tackle the challenging problem of novel view synthesis from
multi-scene 360◦ insufficient seen views, and can naturally
fuse RGB and depth modals. We consider the problem as
an explicit completion task motivated by the fact that given
a few RGB-D views around, we can easily get a large part
of the location and color information of points in a specific
space, and what we need to do is to complete the whole
space, i.e. the explicit neural radiance field. Therefore, our
network can be modeled as a completion mapping function:

fθ : {xini, cini}
i=N
i=1 →

{
xoutj ,kj , σj

}j=M

j=1
,

where k = (kmℓ )
m:−ℓ≤m
ℓ:0≤ℓ≤ℓmax

.
(3)

Here fθ represents our neural network with learnable pa-
rameters θ, which is a completion mapping from N input
RGB-D points consisting of input point cloud coordinates
{xini ∈ R3}i=N

i=1 and colors {cini ∈ R3}i=N
i=1 , to M explicit

neural radiance field points where each σ ∈ R denotes a
scalar opacity while we apply k, a vector of spherical har-
monic (SH) coefficients, to express output color informa-
tion similar to [48, 49]. Each kmℓ ∈ R3 is a set of 3 co-
efficients for RGB channels. It has been discussed in [48]
that spherical harmonics of degree 2 is enough, which re-
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Figure 2. Overview model architecture of X-NeRF. We use a 3D sparse generative convolutional neural network to accomplish our fully
explicit completion modeling. Given a sparse tensor representing a specific incomplete scene, we use a encoder-decoder structure similar
to UNet to complete and map it to an explicit neural radiance field. The encoder only operates on existing coordinates to save cost when
extracting features. Then in the multi-stage decoder, generative transposed convolutional layers with pruning layers are applied to produce
novel points. Each stage gives an output with different resolution, helping to stabilize the training process.

quires 9 coefficients per color channel for a total of 27 har-
monic coefficients per voxel, and we follow their setting.
The SHs enable the output colors cout to be view-dependent
by querying the SH functions Y m

ℓ : S2 7→ R given its cor-
responding view direction d:

cout(d;k) = Sigmoid

(
ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

kmℓ Y m
ℓ (d)

)
. (4)

We note here that SHs are vital to novel view synthesis un-
der insufficient-view condition. More detailed discussions
are illustrated in Sec. 4.5 and Fig. 5.

4.2. Model Architecture

Processing RGB-D data is a classic multi-modal prob-
lem. In this paper, we convert multi-view RGB-D inputs
to colorful point clouds, and voxelize them into Minkowski
sparse tensors [4] so that we can directly apply operations
like convolution and transposed convolution on them.

As shown in Fig. 2, we apply an encoder-decoder ar-
chitecture with skip connections, similar to the structure of
UNet [34]. The sparse tensor encoder is mainly used for
extracting spatial and local features, which is composed of
some convolution and residual blocks, while the generative
sparse tensor decoder consisting of generative transposed
convolution, pruning and residual blocks mainly plays a
role of up-sampling and generating new points. The de-

coder is designed to have multi-stage outputs with increas-
ing resolutions. The outputs of every stage participate in
loss computation, which is inspired by the coarse-to-fine
design in most of NeRF-related methods.

The encoder only operates on known coordinates. In
other words, no new coordinates are generated during en-
coding. When decoding, we apply generative transposed
convolutional layers followed by pruning layers to up-
sample and complete the whole radiance field. A sim-
ple low-dimension schematic diagram of the encoding-
decoding pipeline is illustrated in Fig 3. As we can see,
the function of pruning is to remove redundant points to
save computational resources as well as make the output
more accurate. Details for generative transposed convolu-
tion layer can be found in [4, 13].

The multi-stage design of decoder is also beneficial to
decide which points to keep or to prune. Specifically, in
each stage, we prune a point Pi if its corresponding output
termination probability αi is too small and it is too far away
from the input point set:

Pi is pruned if αi ≤ τα and min
Pj∈Cin

dist(Pi, Pj) ≤ τdist ,

(5)
where τα and τdist are two hyper-parameters; Cin denotes
the coordinate set of input point cloud; dist(·, ·) represents
the operation that computes the Euclidean distance between
two points. The intention of the second distance term is

5769



Input Surface Voxelized Input Conv Output ConvTr Output Pruning Output
Figure 3. A 2-D sketch about the encoding-decoding process. Given an input surface, we first voxelize it into a sparse tensor which is
fed into convolutional encoders. The encoders only operate on existing locations and generate no new coordinates. After that, generative
transposed convolutional decoders are applied to up-sample and generate new coordinates so as to complete the scene structure. Finally,
optional pruning layers are utilized to remove unnecessary points.

that points too far away are not likely to belong to the com-
plete scene. In the practice, we discover that the pruning
operation can reduce memory consumption and has little
impact on performance, but it may slightly affect the execu-
tion speed, so we leave it as an optional choice.

4.3. Volumetric Rendering

Given a few RGB-D images, we can project and voxelize
them into a sparse tensor Tin consisting of a set of coordi-
nates Cin and the corresponding features Fin:

Tin = (Cin,Fin) , (6a)

Cin = {xi, yi, zi}i=N
i=1 , (6b)

Fin = {cini}i=N
i=1 , (6c)

where cini ∈ R3 represents the 3-channel RGB colors.
Let’s denote our X-NeRF model as fθ, then we can get an

output expanded sparse tensor that contains the information
of the completed scene, as discussed in Eq. 3:

Tout = fθ(Tin) = (Cout,Fout) , (7a)

Cout = {xj , yj , zj}j=M
j=1 , (7b)

Fout = {kj , σ̈j}j=M
j=1 , (7c)

where σ̈j ∈ R denotes the raw density before activation.
Sun et al. [39] has shown that post-activation, i.e. imple-

menting activation function after interpolation operation, is
the best choice for volumetric rendering and we follow this
setting. As discussed in Sec. 3, given view directions d and
shooting rays r corresponding to specific 2D pixels, we first
interpolate Tout on r to obtain the SHs k and raw densities
σ̈r on them, and then use the shifted Softplus mentioned in
Mip-NeRF [1] to acquire the corresponding densities:

σr = log(1 + exp(σ̈r + b)) , (8)

where the shift b is a hyper-parameter. The RGB colors on
each ray point in radiance field can be gotten through Eq. 4.
After that, we can apply Eq. 1 and Eq. 2 to render the 2D
pixel colors Ĉ(r) and depths D̂(r).

4.4. Optimization

Since all the operations in our pipeline is differentiable,
we can optimize X-NeRF through gradient decent. To com-
bat the overfitting issue arising from insufficient views, loss
function composed of the following parts is applied.

Rendering Loss. Given a set of RGB-D inputs and cam-
era poses P, the rendering loss is given by the mean squared
error (MSE) between ground-truth and rendered outputs:

Lrender = Lcolor + λDLdepth ,

Lcolor =
1

|R(P)|
∑

r∈R(P)

∥Ĉ(r)− C(r)∥22 ,

Ldepth =
1

|RVD(P)|
∑

r∈RVD(P)

∥D̂(r)−D(r)∥22 ,

(9)

where R(P) is the set of rays of P while RVD(P) ⊆ R(P)
contains rays with valid depths. λD is a hyper-parameter.

Perceptual Loss. Besides the vanilla MSE loss, we fur-
ther add a perceptual loss considering per-pixel MSE error
contains no global or high level context information, which
may not guide the model to the right road. In practice, lower
MSE does not necessarily mean better human perceptual
quality. We display intuitive and simple examples in Fig 4
for the above two cases. To this end, motivated by many
image generation works, we adopt the perceptual loss [52]
to avoid falling into a trivial solution:

Lpercep =

L∑
l=1

1

HlWl

∑
h,w

∥∥wl ⊙
(
ŷlhw − ŷl0hw

)∥∥2
2

, (10)

where ŷl, ŷl0 ∈ RHl×Wl×Cl are the channel-dimension unit-
normalized l-th layer feature stack of rendered and refer-
ence image patches, which is extracted from L layers of a
fixed pre-trained neural network such as VGG [37]. Note
that to use the perceptual loss we need to sample rays in an
image patch level.

Combining the above, we can get an overall loss:

Loverall = Lrender + λpercepLpercep , (11)

where λpercep is a weighting hyper-parameter.
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Reference 2-pixel Shifted Blurred Noised

MSE=39.68 MSE=39.98 MSE=39.84

Figure 4. Illustrations on the ambiguity of MSE loss. The three
generated examples have similar MSE values, but their perceptual
quality varies greatly. From left to right are ground truth, shifted
by 2 pixels, Guassian blurred and with random noise.

GT w/ SH w/ SH & 
Percep. Loss

w/ SH & Rot &
Percep. LossNone

Figure 5. Effectiveness of SH, perception loss and view aug-
mentation through random rotation on novel view. We can see
that all of them can markedly enhance the synthesis quality.

Lastly, as mentioned in Sec. 4.2, we have multi-stage
outputs, so the final total loss is:

Ltotal =
∑
s

λs
stageLs

overall , (12)

where λs
stage is the weight coefficient of stage s.

4.5. View Augmentation

We utilize spherical harmonics to make rendered colors
view-independent (see Sec. 4.1). Nevertheless, due to the
sparsity and small quantity of training views, we observe in
the experiments that the SH coefficients are not fitted well
on novel view directions. To handle this limitation, we ap-
ply random rotation augmentation on input point clouds to
manually simulate unseen view directions. We find that this
simple operation can significantly improve the quality of
rendered unseen view images. Fig. 5 shows the effective-
ness of implementing SH, perception loss and view aug-
mentation through random rotation on point clouds.

4.6. Fast Inference

Most fully implicit coordinate-based NeRF methods
struggle with the rendering efficiency because they have to
run networks repeatedly on each position on each ray of
given camera poses. However, X-NeRF can just save the
explicit scene representations Tout so that only rendering
operations such as interpolation and integral that are highly
parallelizable needed to be done during inference. The in-
ference complexity is thus reduced a lot since no neural net-
work is needed to be run.

5. Experiments
5.1. Dataset

Since the setting of multi-scene insufficient 360◦ RGB-
D views has never been discussed before, we collect a new
dataset for this challenging task. We use 7 RGB-D cameras
to capture 6 seen and 4 novel scenes, in which a robot arm is
doing different tasks in different environments. The views
are extremely sparse with large angle transformations. The
overlapping among views is less than 10% to 20%. One
example is shown in Fig. 1. Among 7 views, one is left for
testing while the other 6 are training views. Please refer to
the supplementary material for more details.

5.2. Implementation Details

All experiments are conducted on a single NVIDIA
A100 GPU. We apply PyTorch [31] and Minkowski En-
gine [4] to build our sparse network. Among all single
scene experiments and the multi-scene experiment, we keep
the same hyper-parameters. A simple ResNet14 [14] of 3D
sparse version is employed as our backbone. When voxeliz-
ing the input point clouds, we set the voxel size as 4×10−3.
We choose AdamW [25] as our optimizer. In each batch,
we sample 2 random image patch of size 40 × 40 for all 6
training views, which is equivalent to a total ray batch size
of 6 × 2 × 40 × 40 = 19200. We train our models for 240
epochs with an initial learning rate of 10−3, and the learning
rate is divided by 10 at 120th and 200th epoch. See supple-
mentary material for detailed hyper-parameter setups.

5.3. Comparison Experiments

In this section, we compare proposed X-NeRF with
state-of-the-art implicit NeRF-related work on our ex-
tremely challenging 360◦ insufficient RGB-D view dataset.
Note that besides common metrics for RGB novel view syn-
thesis, we also evaluate depth error since in our setting of
insufficient RGB-D input views, the rendering quality of
depth counts for much. We adopt mean squared error in
meters in valid areas as depth metric since low-cost depth
cameras may have some invalid values.

Single Scene Comparisons. Considering our data and
models are RGB-D, we first compare with DS-NeRF [7],
a state-of-the-art implicit NeRF-based method that also al-
lows depth inputs. Furthermore, we also compare with
DVGO [39], a state-of-the-art NeRF-based approach that
utilizes explicit voxel grid structures. Unfortunately, the
above two methods do not support multi-scene training, so
we compare with them on single scene. DVGO [39] origi-
nally does not support depth supervision. For fair compar-
ison, we also add depth supervision to it. The quantitative
metrics on novel view can be found in Tab. 1. We can see
that X-NeRF significantly out-performs the two methods on
each single scene especially on depth error, which means
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GT DS-NeRF DVGO w/ depth X-NeRF (ours)

Figure 6. Single scene qualitative results on scene 1-2. From top to bottom, each line shows rendered RGB and depth images on novel
view of different methods. Obviously, our proposed X-NeRF performs significantly better than the other two implicit methods.

Scene 1 Scene 2 Scene 3
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
DS-NeRF [7] 0.891 6.65 0.267 87.54 0.714 15.60 0.537 86.55 0.797 8.02 0.011 82.85
DVGO [39] 0.735 8.93 0.100 68.46 0.738 9.47 0.205 55.13 0.776 9.62 0.156 69.81
DVGO [39] w/ depth 0.726 9.46 0.124 66.16 0.723 10.03 0.220 55.69 0.764 10.22 0.170 69.21
X-NeRF 0.521 17.39 0.414 0.257 0.505 16.38 0.457 0.356 0.452 17.83 0.477 1.66

Scene 4 Scene 5 Scene 6
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
DS-NeRF [7] 0.698 7.07 0.093 87.56 0.701 12.00 0.748 86.14 0.754 8.63 0.463 80.04
DVGO [39] 0.651 11.84 0.576 51.67 0.729 11.89 0.540 58.10 0.740 7.36 0.226 59.71
DVGO [39] w/ depth 0.643 11.96 0.560 54.69 0.730 12.05 0.532 58.38 0.762 7.51 0.196 61.51
X-NeRF 0.397 17.73 0.754 0.367 0.431 18.58 0.812 0.485 0.471 18.19 0.593 0.269

Table 1. Quantitative results on each single scene. We use three common RGB metrics, namely LPIPS (using pre-trained VGG, lower is
better) and PSNR/SSIM(higher is better). The depth error is evaluated by mean squared error in valid area, whose unit is meter%.

that X-NeRF succeeds in avoiding to overfit to a trivial so-
lution. Moreover, DVGO [39] does not have a significant
improvement on novel view after adding depth supervision,
indicating that the key factor is not the depth loss but the
modeling methodology. The qualitative results of scene 1-3
are displayed in Fig. 6 and all results can be found in supple-
mentary material. It is obvious that implicit methods fails
to generalize well on novel view facing insufficient training
views and large view gaps.

Multi-Scene and Cross-Scene Comparisons. As men-
tioned above, X-NeRF is able to deal with multi-scene rep-
resentation due to our explicit completion modeling. There
is a little work that can handle multi-scene task. Pixel-
NeRF [50] combines image features from 2D CNNs with
NeRF so that it can train on multi-scene. Therefore, we
re-train pixelNeRF [50] concurrently on 6 scenes for 3000
epochs to compare our work with it on the multi-scene per-
formance. IBRNet [44] is an image-based rendering ap-
proach which applies an MLP and a ray transformer to
learn a generic view interpolation function. We finetune
IBRNet [44] using its pre-trained weights for 60000 iter-
ations. Since the two methods both need reference views
when rendering, we use all the 6 seen views as reference
images during evaluation. From the quantitative results in
Tab. 2 and the qualitative results of scene 3-6 in Fig. 8 (all
results can be found in supplementary material), we can see
that pixelNeRF [50] completely overfit to a trivial solution,

GT RGB GT Depth Predicted Depth

Figure 7. Depth completion effect. Examples of ground truth
RGB image, ground truth depth image and predicted depth im-
age are shown from left to right. The invalid depth values are
represented in black color and marked with a blue ellipse. The red
ellipse circles out the area where the depth camera has errors. We
can see that the rendering result can not only complete the missing
area but can also correct the mistakes.

and X-NeRF again beat both the two methods. If we com-
pare Tab. 2 with Tab. 1, the multi-scene version X-NeRF
is even better than the single-scene version, indicating that
X-NeRF has a powerful generalization capacity. We also
do cross-scene comparisons on novel view of two novel
scenes. The results indicate that X-NeRF has a powerful
cross-scene performance, which proves that X-NeRF learns
a completion mapping with good generalization ability.

Complexity Comparisons. We further compare the in-
ference time per image, training time and the model size
among the multi-scene methods, which is shown in Tab. 3.
We can find that X-NeRF requires less training time. X-
NeRF also has a comparable inference time and model size
with IBRNet [44], much better than pixelNeRF [50].
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Figure 8. Multi-scene and cross-scene qualitative results. The first 2 rows show scene 5-6 and the last 4 rows show the 4 novel scenes.

Scene 1 Scene 2 Scene 3 Scene 4
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
pixelNeRF [50] 0.802 11.72 0.333 25.76 0.792 16.75 0.507 22.45 0.785 13.14 0.359 25.59 0.770 12.68 0.576 21.71
IBRNet [44] 0.646 14.37 0.283 9.30 0.673 16.43 0.316 12.42 0.631 16.89 0.336 12.38 0.642 13.95 0.533 8.31
IBRNet [44] w/ depth 0.620 14.85 0.336 11.48 0.657 16.63 0.368 16.79 0.617 16.65 0.351 12.05 0.631 14.67 0.552 8.96
X-NeRF (ours) 0.534 18.25 0.440 0.0971 0.587 17.59 0.520 0.144 0.484 18.05 0.476 0.888 0.397 18.65 0.752 0.138

Scene 5 Scene 6 Novel Scene 1 Novel Scene 2
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
pixelNeRF [50] 0.707 14.03 0.714 24.28 0.808 11.72 0.477 19.62 0.885 11.74 0.546 23.02 0.722 15.22 0.388 24.24
IBRNet [44] 0.633 18.49 0.613 8.83 0.656 13.45 0.365 5.38 0.633 14.06 0.455 9.42 0.638 16.33 0.294 12.36
IBRNet [44] w/ depth 0.678 14.52 0.512 12.68 0.649 13.74 0.356 5.96 0.628 13.55 0.463 8.72 0.648 14.36 0.261 14.67
X-NeRF (ours) 0.408 18.71 0.817 0.346 0.476 17.69 0.605 0.152 0.452 18.66 0.603 1.70 0.549 17.93 0.445 1.82

Novel Scene 3 Novel Scene 4 Overall Avg. on Seen Scenes Overall Avg. on Novel Scenes
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓
RGB Metrics Depth

Err%↓LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
pixelNeRF [50] 0.679 14.57 0.630 28.72 0.748 13.24 0.580 22.74 0.778 13.34 0.494 23.23 0.759 13.69 0.536 24.68
IBRNet [44] 0.692 13.44 0.418 7.26 0.713 11.95 0.340 10.45 0.647 15.60 0.408 9.44 0.669 13.95 0.377 9.87
IBRNet [44] w/ depth 0.696 13.60 0.379 10.17 0.724 11.50 0.320 13.62 0.642 15.18 0.412 11.32 0.674 13.25 0.356 11.80
X-NeRF (ours) 0.512 17.17 0.656 1.70 0.520 17.57 0.633 1.67 0.486 18.19 0.582 0.661 0.508 17.83 0.584 1.72

Table 2. Quantitative results on multi-scene. We train each model on 6 scenes simultaneously, then report their performance on each
scene as well as the overall average scores. We also evaluate the models on two novel scenes on novel view synthesis.

Method #Params Training Inference

pixelNeRF [50] 28.2M >10 days ∼41s
IBRNet [44] 8.9M ∼6 days ∼18s
X-NeRF (ours) 22.1M ∼3.5 days ∼11s

Table 3. Complexity comparisons. We report model size, training
time (including pre-training) and inference time per image.

5.4. Completion Ability

We further study X-NeRF’s completion ability. The re-
sult in Fig. 7 clearly illustrates that X-NeRF are robust
enough to complete the missing areas and correct the wrong
values caused by low-cost depth cameras.

6. Conclusion
We propose a novel and extremely challenging task that

to synthesize novel view RGB-D images given only insuffi-
cient seen views on multiple scenes. The problem is useful
in low-cost environment and may expand practical usage
scenarios of NeRF-related work. A new dataset is collected
for the new problem, on which our proposed fully explicit
methodology X-NeRF greatly out-performs existing meth-
ods.
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