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Abstract

Prior quantization methods focus on producing networks
for fast and lightweight inference. However, the cost of un-
quantised training is overlooked, despite requiring signif-
icantly more time and energy than inference. We present
a method for quantizing convolutional neural networks for
efficient training. Quantizing gradients is challenging be-
cause it requires higher granularity and their values span
a wider range than the weight and feature maps. We pro-
pose an extension of the Channel-wise Block Floating Point
format that allows for quick gradient computation, using
a minimal amount of quantization time. This is achieved
through sharing an exponent across both depth and batch
dimensions in order to quantize tensors once and reuse them
during backpropagation. We test our method using stan-
dard models such as AlexNet, VGG, and ResNet, on the CI-
FAR10, SVHN and ImageNet datasets. We show no loss of
accuracy when quantizing AlexNet weights, activations and
gradients to only 4 bits training ImageNet.

1. Introduction

Convolutional Neural Networks have become ubiquitous
in a variety of applications, from Image Recognition [18]
to Face Identification [34]. One drawback of these models
is the amount of computational resources required. It has
been estimated that in order to achieve the current 11.5%
error benchmark on ImageNet, around 106 $USD has been
spent on computation cost alone [36]. Therefore, significant
amounts of research has been conducted in order to make
models run quicker, and using less memory and energy.

Quantization is now an important way of addressing this

problem. This method has been successfully used by the
industry to deploy to embedded devices [14] and servers [8].
However, most of the effort has been put into quantizing
models for inference, focusing only on the forward pass.
There is significantly less research on gradient quantization.

A prohibitive amount of time is used in the development
cycle to train networks: the backward pass requires twice as
many convolution calculations as the forward pass. There-
fore, it is paramount to accelerate the backward pass.

Many factors contribute to this, including the require-
ment for higher precision for gradients, and the focus on
deploying to the end user rather than optimizing for produc-
tion. Moreover, many methods use different quantization
schemes (hardware) for the forward and backward pass. For
example, Habana Labs uses a specific hardware for training
(Gaudi [19]), and another for inference (Goya [20]); previ-
ous papers like DoReFa-Net [49] use different quantization
schemes for gradients and weights/ activations.

Building on this motivation, we propose a method to ad-
dress the challenges in calculating gradients using low pre-
cision, whilst using the same quantization building block
both at training and inference. Our method quantizes both
passes of a convolutional neural network, such that the bulk
of the multiplications and additions are done in narrow pre-
cision. Our contributions are as follows:

• A method for quantizing forward and backward passes
using the same hardware and quantization scheme.

• An extension of block floating point which allows for
less quantization conversion operations.

• Robust results in a variety of datasets and different
families of architectures, including no loss of accuracy
when quantizing AlexNet down to 4 bits.
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Our method employs the Block Floating Point (BFP)
method to backpropagation, which can achieve high accu-
racy using narrow bitwidths by using simple heuristics for
exponent sharing. Furthermore, we introduce a variant of
BFP that we call HyperBFP, which spares redundant quan-
tization passes to tensors and makes the system simpler to
design, requiring lower memory bandwidth.

Using these methods, we were able to achieve high qual-
ity results even on the most challenging datasets such as Im-
ageNet. We show that when small block sizes are used, such
as 8 or 16, we can get little loss of accuracy when quantiz-
ing to as low as 2 bits. When we use slightly bigger block
sizes such as 32, we achieve no loss of accuracy even when
quantizing weights, activations and gradients to 4 bits.

2. Related Work

Many approaches have been tried to accelerate neural
network computation. The most natural way is to select
better models. The goal is to find architectures that run
quicker than traditional methods on retail hardware, such
as CPUs and GPUs. This resulted on finding efficient archi-
tectures, both human-designed such as MobileNetV2 [31],
ShuffleNet [47], and automated methods using Neural Ar-
chitecture Search (NAS) such as MNasNet [35] and FB-
Nets [40]. Quantization methods can be used in conjunc-
tion with better model selection to get additional speed and
energy benefits. This has been shown to work even on the
highly efficient MobileNet [15]. There is an extensive lit-
erature in quantization, which can be divided by two tasks:
Quantized Inference, and Quantized Training.

2.1. Quantized Inference

The goal is to quantize both weights and activations, al-
lowing for quick inference algorithms, since using compat-
ible hardware operations in lower precision are quicker and
less spacious than regular FP32 format. Most of these meth-
ods assume that the training can be performed using FP32
format, but the inference is restricted to low bitwidths. An
example of this type of method include QNN [11], which
was one of the first methods to include binary weights.
Other examples include Halfwave-Gaussian Quantization
(HWGQ [2]), ABC-Net [24], LQ-Nets [44], and PSGD
[16]. The work of [22] substitutes the ubiquitously used
Straight-Through Estimator (STE) with an adaptive gradi-
ent scaling function that shrinks the error given when using
STE. Another variation of quantized inference is to quan-
tize models without the need for (unlabelled) data, or using
synthetic data, which is referred to as post-training quanti-
zation. For example [23,25,26,46] use only a small amount
of (unlabelled) data (or synthetic data) to quantize a net-
work. The advantage of this method is that no further train-
ing is required, often utilizing only a calibration step.

2.2. Quantized Training

The absolute majority of the quantization methods fo-
cus on quantizing the forward pass (inference) part of the
model only. There are a few methods though that are able
to also quantize the gradients to low bitwidth [41, 43]. This
also means that the backward pass can be done quicker in
specialized hardware. Some of these methods include [45],
which uses a fixed-point only computation for forward and
backward-pass, employing different bitwidths for different
layers (from int8 for weights and activations, to a combi-
nation of int8, int16 and int24 for gradients); [6] uses an
end-to-end block floating point inspired quantization tech-
nique to train CNNs with forward and backward passes
quantized; [1] also shows good results when quantizing us-
ing 8 bits. DoReFa-Net [49], which aims to achieve bi-
nary weights, activations and gradient quantization by using
hand-designed transformation functions.

The papers that are most related to our work include
SWALP [42], and [48], both of which are able to suc-
cessfully quantize both the backward and forward pass of
convolutional neural networks. Other methods such as
ALQ/AMQ [7] and TRN [39] quantize only the stochastic
gradient for communication efficiency.

Aside from the academic papers on quantization, the
industry has adopted different floating point standards in
order to accelerate computation using narrow precision.
NVidia uses the TensorFloat32 format on the A100 GPUs
[29] which uses 8 bit exponents and 10 bit mantissa; and
Google uses the BFloat16 format on the TPU v3 [38], which
uses 8 bits exponents and 7 bits mantissa. 8-bit floating
point numbers has also being proposed for training [37].

This paper will focus on quantized training, and we will
expand the literature by showing a new method of quantiz-
ing gradients based on the BFP format.

3. Preamble

The Single Floating Point (FP) format, defined by IEEE-
754 [12], consists of representing a number using 32 bits
(FP32): 1 for the sign, 8 for the exponent, and 23 for the
mantissa. Its decimal value can be calculated by the for-
mula a = (−1)b0 × 2((b1b2...)2−127) × 1.b9b11...b31, where
()2 indicates binary format and bn is the nth binary value
of this representation: b0 fixes the sign, b1...8 specifies the
exponent, and b9...31 specifies its mantissa.

Different formats balance range and precision by chang-
ing the number of bits used for the exponent and the man-
tissa (see BFloat16 [38], TensorFloat32 [29], and FP8 [37]).
Fixed point formats are slightly more limited as they lack
the possibility of a large range of values, but also require
smaller area for operations in the hardware.

The BFP format, rather than being a representation for
a single value, consists of a format for a group of values.
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Figure 1: Diagram depicting Block Floating Point format
for a block size of 4. Note that in the BFP format, the sign
+ mantissa bits are fixed-point integer, and the shared expo-
nent acts as a scale value across the entire block.

The representation is similar to FP32, but instead of having
one exponent for each number, it shares the same exponent
across a certain number of values. Figure 1 shows how it
works. Instead of each number being represented by an in-
dividual exponent and mantissa values, BFP shares a single
exponent across in this case 4 values, which are represented
then in fixed-point. BFP then balances the range of floating
point with the efficient computation of fixed point.

This strategy has been applied to CNNs and tensors be-
fore. Previous papers have used different strategies for shar-
ing exponents: for inference only [5,27,28], and for training
as well [4,6,32,42]. Most of the methods share the exponent
across entire tensors, or batches. SWALP [42] uses both
“Big-block” design (which shares one exponent per batched
tensor) and “Small-block” design, which also shares ex-
ponents across batch normalization layers, and fully con-
nected (FC) layers. We believe that these options are un-
necessarily restrictive, and more accuracy can be obtained
by using smaller blocks. We follow the strategy of [27], in
which exponents are shared channel-wise. This allows for
a fine-grained trade-off between accuracy and computation,
whilst taking advantage of fixed point operations in hard-
ware. When converting from FP32 to BFP format, across
the channel dimension, for each vector of size blk, the max-
imum exponent is chosen and it is shared among all other
values. This is done by calculating the shift of the mantissas
needed for each value to enforce the same exponent.

During inference, when this format is used, the convolu-
tion can be performed by using only integer Multiply and
Accumulate (MAC) operations per block (channel-wise),
plus a small number of FP summations of the resulting
scalars, which was shown to be effective for inference.

4. Method
We propose a method for quantizing weights, activa-

tions, and gradients for computation in low-precision based
on the BFP format. BFP is not invariant to transposition in

the input / output channel dimensions (see Figure 2), which
complicates convolution operations in the backward pass.

Given a kernel W(o,i,k,k), input A(b,i,wa,ha), and feature
map F(b,o,wa,ha), where i is the input channels, o is the out-
put channels, wa is the width, ha is the height, b is the batch
size, and k is the kernel width and height, the forward pass
of the convolution is defined as:

fb,o,wa,ha =

3∑
k

3∑
k

i∑
id

wo,id,k,k · ab,id,wa+k,ha+k︸ ︷︷ ︸
Inner MAC

assuming kernel size equals to three, padding and stride ad-
justed to preserve the same width and height.

The convolution can be seen as transforming the input
features from having i channels, to the output features hav-
ing o channels. For BFP, the weight and activation share
the exponent in blocks, allowing for low-precision compu-
tation. Therefore, the Inner MAC in the right hand side of
the equation above becomes:

#blk∑
n

blk∑
ib

wo,n·blk+ib,k,k · ab,n·blk+ib,wa+k,ha+k︸ ︷︷ ︸
Done in low-precision

where #blk indicates the number of blocks depthwise in the
convolution (for example, if blk = 32 and i = 128, then the
number of blocks is 4).

For backpropagation to work, both the gradient of the
loss with respect to the kernel ∇lW ∈ R(o,i,k,k) , and with
respect to the input features ∇lA ∈ R(b,i,wa,ha), given the
gradient with respect to the feature map∇lF ∈ R(b,o,wa,ha),
need to be calculated. Both can be obtained by using trans-
posed convolutions:

∇lAi
= tconv(W,∇lAo)

∇lW = pconv(Ai,∇lAo)

where tconv indicates the transpose convolution operator,
and pconv indicates the permute convolution operator. Both
of them can be defined in terms of a normal convolution
(ignoring stride, padding, grouping, etc).

tconv(W,∇lAo ) := conv(W180
T ,∇lAo )

pconv(Ai,∇lAo ) := conv(Ai
T ,∇lTAo

)T

where 180 indicates a rotation of 180 degree across the third
and fourth dimensions (w, h), and T means transposing in
the first and second dimensions (i, b).

Note that for both tconv and pconv, the first two dimen-
sions need to be transposed, which causes problems when
applying BFP operations, since the exponent that was pre-
viously shared across depth is now shared across the batch /
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Figure 2: Difference between BFP and HyperBlock. In this example, the tensor has shape (2, 4, 1, 1), such that batch= 2,
channel= 4, width=height= 1, blk = 2. Same coloured cells correspond to the same shared exponent. In BFP, before
transposition, cells were aligned such that MACs could be performed within blocks. After transposition, BFP does not hold
this property, as numbers with shared exponent are in different batches. HBFP keeps shared exponents in the same batches
after transposition, since they are shared across a 2D block of 2 by 2.

outer channel dimension, which means that MACs using in-
teger only operations can no longer be exploited, since they
do not share an exponent anymore. Figure 2 shows the prob-
lem for BFP. After transposition of channels and batches /
output channels dimensions, exponents are not shared any-
more, which makes it impossible to take advantage of low
bitwidth MAC operations in hardware.

There are two ways to avoid this “permutation problem”:
Direct Gradient BFP, and HyperBlock Floating Point. We
compare both in the next sections.

4.1. Direct Gradient Block Floating Point

Naively applying BFP to gradients means adding a BFP
quantizer just after transposition, but before convolution.
This means that just before a tensor is convolved, BFP quan-
tizer is applied across the dimension that is going to be per-
formed the dot-product. In the forward pass, this means ap-
plying BFP depthwise on both the weight and activation. In
the backward pass, this means applying BFP across batches
in the activation and gradient in order to convolve them re-
sulting in the gradient with respect to the weight; and across
output channel in the weight and across channel in the gra-
dient to perform the convolution, resulting in the gradient
with respect to activation. Figure 3a shows how this is done.

Note that because BFP is not invariant to permutation,
the quantization of the tensors in the normal and in the per-
muted dimension need to be applied every time they are
convolved. This has two implications: First, in total there
is a need to quantize tensors 6 times for each convolutional
layer - two in the forward pass for the weight and activa-
tion, and 4 in the backward pass for the transposed version
of weight, activation, and gradient with respect to feature
map; Second, since different dimensions are being quan-
tized on the fly, all tensors need to be stored in FP32, which

Algorithm 1: Block Floating Point Quantizer
Input: Input[N, C, W, H], BIT, BLK
Result: IntT[N, C, W, H], ExpT[N, blk, W, H];

blk = ceil(C/BLK);

// Part 1: Assemble ExpT
for n=0:N; w=0:W; h=0:H; b=0:blk do

max e← -127;
for c blk=0:BLK do

c← c blk + b * BLK;
e← get exp(Input[n, c, w, h]);
if e > max e then

max e← e;
end

end
ExpT[n, b, w, h]← max e;

end
// Part 2: Assemble IntT
for n=0:N; w=0:W; h=0:H;c=0:C; do

e← get exp(Input[n, c, w, h]);
m← mantissa(Input[n, c, w, h]);
s← sign(Input[n, c, w, h]);
shift← (ExpT[n, floor(c/BLK), w, h] - e);
m = (m >> shift) + U(0, 1);
m = floor(m, BIT);
IntT[n, c, w, h] = s && m;

end

consequently requires considerably higher bandwidth.

Algorithm 1 details this implementation. First, for each
block in the tensor, the maximum exponent is extracted.
For a block size of BLK, this results in an exponent ten-
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(a) Convolution Layer using BFP (b) Convolution Layer using HBFP

Figure 3: Forward and backward passes of Direct Block Floating Point (DBFP) (a), and HyperBlock Floating Point (HBFP)
(b). In DBFP, there are 6 BFP quantization operations, whereas 3 are needed in HBFP since they are invariant to transposition.
As highlighted by the red arrows, in DBFP the FP32 tensors are used twice, whereas in HBFP the already quantized tensors
are reused for backprop. Following previous papers [1, 45], only∇lA is quantized, whereas∇lW is kept in FP32.

sor with sizes (N, ceil(C/BLK),W,H). Therefore, there
is approximately NCWH multiplies in low-bit fixed point,
and NWHceil(C/BLK) adds in FP32 for each tensor mul-
tiplication. Note that this can be parallelized in the outer
loop. The same implementation works for transposition by
changing the index of the first two dimensions. Once the ex-
ponent tensor is assembled, a shift operator can be applied
to each value in the input tensor, based on which block they
belong to, such that they all share the exponent dictated by
the exponent tensor. Stochastic rounding [3] is then used
(by adding a Uniformly sampled value as explained in Sec-
tion 4.3), and the final value is stored in the integer tensor.
Note that this second part is parallelized in all dimensions.
This results in an Integer Tensor that performs all the multi-
plications, and the bulk of additions during any convolution.

4.2. HyperBlock

We propose a simpler way of avoiding having to quan-
tize the same tensors multiple times. Instead of quan-
tizing using blocks depthwise, 2 dimensional blocks can
be used across the two dimensions that are transposed.
Figure 2 shows how this is done. First, a block value
is selected (say blk = 2). This means that for a 2
dimensional block of 2x2, an exponent is selected and
shared across the entire 2D block, resulting in an exponent
tensor with sizes (ceil(N/BLK), ceil(C/BLK),W,H).
Therefore, there are NCWH fixed-point multiplies and
WHceil(NC/BLK2) adds in FP32 for each tensor mul-
tiplication. Whenever the tensor needs to transpose before
convolutions, the right blocks still share the same expo-
nents, and there is no need to quantize further.

This has many implications for the entire process, which
can be seen in Figure 3b. For the forward pass, the weight
and activation are quantized using HyperBFP and con-

Algorithm 2: HyperBlock Quantizer
Input: Input[N, C, W, H], BIT, BLK
Result: IntT[N, C, W, H], ExpT[blkn, blkc, W, H];

blkc = ceil(C/BLK);
blkn = ceil(N/BLK);

// Part 1: Assemble ExpT
for w=0:W; h=0:H; b c=0:blkc; b n=0:blkn do

max e← -127;
for c blk=0:BLK; n blk=0:BLK do

c← c blk + b c * BLK;
n← n blk + b n * BLK;
e← get exp(Input[n, c, w, h]);
if e > max e then

max e← e;
end

end
ExpT[b n, b c, w, h]← max e;

end
// Part 2: Assemble IntT
for n=0:N; w=0:W; h=0:H;c=0:C; do

e← get exp(Input[n, c, w, h]);
m← mantissa(Input[n, c, w, h]);
s← sign(Input[n, c, w, h]);
shift← (ExpT[floor(n/BLK), floor(c/BLK), w,

h] - e);
m = (m >> shift) + U(0, 1);
m = floor(m, BIT);
IntT[n, c, w, h] = s && m;

end

volved. Note that for the backward pass, the already quan-
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tized version of the weight and the activations are used,
which means that they do not need to be stored in FP32. For
the backward pass, the now quantized weight and activation
are transposed, together with the gradient with respect to
the output map, and they are convolved as expected. This
means that the number of quantization operations needed is
3 for each layer, and that once quantized, their floating point
equivalent do not need to be stored anymore, considerably
reducing the memory bandwidth requirement.

Algorithm 2 shows how the HyperBlock quantizer
works. Similary to the BFP Quantizer, the Exponent Tensor
is assembled by finding the maximum exponent across these
2 dimensional blocks. Then the exponents are use to shift
each value of the input tensor, and then it is stochastically
rounded to the desired bitwidth. All of these operations are
massively paralellizeable, and since they only involve read-
ing the mantissa and exponent values, and shifting, they can
be efficiently implemented in custom hardware.

4.3. Exponent Selection and Stochastic Rounding

In previous papers, the exponent selection is made by
sharing the largest exponent across the entire block [42].
This guarantees that the important (large) values are unal-
tered. We have also adopted this strategy in this paper.

Note that stochastic rounding is used in both methods,
which means rounding a value x up with probability p =
x−⌊x⌋

⌈x⌉−⌊x⌋ , and down with probability 1 − p. In practice,
we simply sample from a uniform distribution, sum to the
value, and floor the result x = ⌊x+ U(0, 1)⌋. The proof of
this equivalence is provided in the supplementary material.

5. Results
We compare the two different approaches for forward

and backward pass calculations: We apply DirectBFP and
HyperBlock method on Cifar10, SVHN and ImageNet.

CIFAR10 We tested our method on the CIFAR10 dataset
[17], which consists of 60k images in total, each with 3
colour channels, in a 32x32 pixels format. The dataset is
split between 10k images for testing and 50k images for
training, each labelled with 10 different classes. We trained
all networks for 200 epochs, using a Stochastic Gradient
Descent optimiser, with initial learning rate of 0.01, mo-
mentum of 0.9, weight decay of 5e-4, and reducing the
learning rate by a factor of 10 every 60 epochs.

The results are shown in Table 1 for ResNet18, and in Ta-
ble 2 for the VGG16. In both cases the bit value shown rep-
resents the bit-length that the weights, activations and gra-
dients of all but the first convolutional layer were quantized.
In both tables we can see the influence that bitlength, block
size, and method choice affects the results. As expected,
the lower the bitlength, the harder it is to train the models

ResNet18 HyperBlock
BLOCK

8 16 32

BIT
4 94.4% (-0.1) 94.5% (-0.0) 94.3% (-0.2)
3 94.1% (-0.4) 93.6% (-0.9) 92.7% (-1.8)
2 93.0% (-1.5) 89.2% (-5.3) 78.0% (-16.5)

ResNet18 DirectBFP
BLOCK

8 16 32

BIT
4 94.1% (-0.4) 93.4% (-1.1) 93.7% (-0.8)
3 94.0% (-0.5) 93.5% (-1.0) 80.0% (-14.5)
2 93.3% (-1.2) 69.5% (-25.0) 66.0% (-28.5)

Table 1: Results of the HyperBlock and Direct methods
applied to ResNet18 using the CIFAR10 Dataset, which
achieves an accuracy of 94.5% using FP32. The number in
parenthesis indicate difference in accuracy to FP32 model.

VGG16 HyperBlock
BLOCK

8 16 32

BIT
4 93.4% (0.8) 93.2% (0.6) 93.4% (0.8)
3 92.9% (0.3) 93.2% (0.6) 92.6% (-0.0)
2 92.8% (0.2) 88.9% (-3.7) 83.3% (-9.3)

VGG16 DirectBFP
BLOCK

8 16 32

BIT
4 92.9% (0.3) 92.9% (0.3) 92.5% (-0.1)
3 92.5% (-0.1) 93.0% (0.4) 79.2% (-13.4)
2 92.3% (-0.3) 76.2% (-16.4) 65.4% (-27.2)

Table 2: Results of the HyperBlock and Direct meth-
ods applied to VGG16 using the CIFAR10 Dataset, which
achieves an accuracy of 92.6% using FP32. The number in
parenthesis indicate difference in accuracy to FP32 model.

and the lower is the accuracy. It is important to note that a
lower bitlength corresponds to more efficient computation,
so there is a natural trade-off between computational com-
plexity and accuracy. The block size affects the accuracy as
well. The lower the block size, the better the accuracy is,
but less efficient is the computation. Note however that the
block size affects differently depending on the method cho-
sen. The results show that for extremely low bitwidths (2
and 3), the Direct method loses accuracy quicker than Hy-
perBlock as the block size increases. For example, in Table
2, there was a loss of 27% when increasing the block size
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Model W A G Block Method Top-1

Model Adorefa 2 2 2 - - 90.0%
Model Aours 2 2 2 8 D 97.4%
Model Aours 2 2 2 16 D 85.7%
Model Aours 4 4 4 16 H 96.9%
Model Aours 4 4 4 32 H 95.8%
Model Bdorefa 2 2 2 - - 91.9%
Model Bours 2 2 2 8 D 96.6%
Model Bours 2 2 2 16 D 86.7%
Model Bours 4 4 4 16 H 96.6%
Model Bours 4 4 4 32 H 96.0%
Model Cdorefa 2 2 2 - - 85.6%
Model Cours 2 2 2 8 D 91.4%
Model Cours 2 2 2 16 D 75.7%
Model Cours 4 4 4 16 H 96.3%
Model Cours 4 4 4 32 H 94.4%

Table 3: Comparison between our method and the one of
DoReFa-Net [49] on the SVHN dataset. The “Direct” in
method indicates usage of the DirectBFP method, and the
rows with “Hyper” indicates HyperBFP.

from 8 to 32 in the case of using 2 bits in the Direct method,
whereas there was a loss of only 9% when using the Hyper-
Block method. The same happens in Table 1, where there
was a loss of 15% when using HyperBlock, whereas there
was a loss of 27% when the Direct method is used.

We believe this is because the weight tensor used for the
forward pass is different than the weight tensor used in the
backward pass in the Direct method. Therefore, it is likely
that the gradient computation would be impacted. In the
Hyperblock method, the same quantized weight used for
the forward pass is also used in the backward pass, which
means that the gradient computed is likely more represen-
tative of the right direction for the update step.

SVHN In order to compare with other methods, we also
tested our algorithm on the SVHN dataset, which is similar
to CIFAR10. This consists of approximately 73k digits for
the regular training set, and 26k digits for the testing set.
Just like DoReFa-Net [49], we also used an extra training
set consisting of 531k digits. All images are labelled with
one of the 10 digits, and each are cropped to 32x32 pixels
with 3 channels for colours, and resized to 40x40 pixels.

We implemented DoReFa-Net’s model architecture for
fair comparison. Model A consists of 8 layers: seven con-
volutional layers with sizes 48, 64, 64, 128, 128, 128, 512,
and an FC layer at the end. Models B, C and D are achieved
by multiplying the channels by 0.5, 0.25, and 0.125 respec-
tively. Table 3 shows the results. Although our aim is not

to get extremely low bitwidth, we have competitive results
even when using only 2 bits. For low block sizes (value
of 8), our network outperforms DoReFa-Net in many in-
stances. We achieve within 1% of accuracy using the Hy-
perBlock method using only 4 bits and blocks of 16 to 32.

ImageNet We also trained our model on ImageNet [30].
We used the ILSVRC2012 training set, which consists of
1.2 million images, and the validation set, consisting of 50k
images. They are all normalized and cropped to 224x224
pixels, with 3 colour channels before being fed to the net-
work. We use batch of 128 and SGD with learning rate of
0.01, just as indicated in the AlexNet paper [18]. For the
ResNet18 training, we used learning rate of 0.1 multiplying
it by 0.1 every 30 epochs following the ResNet paper [9].

Based on the results from both SVHN and CIFAR10, we
tested using block size of 8 when using bitwidth of 2, and
between 16 to 32 for bitwidth of 4 or more. The results
are shown in Table 4. There is no loss of accuracy when
using only 4 bits for weights, activations and gradients using
AlexNet, for block size of 16, and a small loss when using
block size of 32. Both DirectBFP and HyperBFP achieved
good results when using block size of 32 using only 4 bits.
There is an accuracy loss of 8% when using only 2 bits with
block size of 8. This is encouraging as even though our
method is not meant to provide good accuracy in extreme
low bitwidth, we are still competitive with DoReFa-Net.

ResNet18 is a more challenging network to train. We get
competitive results by achieving less than 1% accuracy loss
for 8 and 5 bits. In comparison to SWALP, this is achieved
without the need to perform averaging of the weights. It also
avoids the need for tanh computations needed in DoReFa-
Net. The accuracy degrades when going to lower bits, and
lower block sizes need to be used. We also compared to
ALQ/AMQ [7] and TRN [39], even though they quantize
only the gradients. We include these results here since they
provide an estimate of an “upper bound” on accuracy for
quantized gradients. We can see that a drop in accuracy is
expected when using low precision gradients regardless of
the precision used in weights and activations.

Role of Stochastic Rounding We use stochastic rounding
for both BFP and HBFP. Without stochastic rounding, our
method’s accuracy drops on 5-bit ResNet18 from 68.3% to
40.7%, a loss of 27.6%. We believe that this is so effective
because it avoids the problem of stagnation, where gradi-
ents are rounded down to zero, which stagnates the weight
values in suboptimal values. More details about our conclu-
sion is provided in the supplementary material.

5.1. Hardware Comparisons

To show the advantages of being able to perform train-
ing and inference by using our method, we created (gate
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Algorithm W| A| G Block Method Model Top1

DoReFa [49] 1 | 2 | 6 - - AlexNet 46.1%
Ours 2 | 2 | 2 8 H AlexNet 48.8%
Ours 4 | 4 | 4 16 H AlexNet 56.2%
Ours 4 | 4 | 4 32 H AlexNet 55.6%
Ours 4 | 4 | 4 32 D AlexNet 55.4%

DoReFa [49] 8 | 8 | 8 - - AlexNet 53.0%
FP32 32 - - AlexNet 55.9%

Ours 8 | 8 | 8 32 D ResNet18 69.2%
Ours 5 | 5 | 5 32 D ResNet18 68.3%

ALQ [7] 32 | 32 | 3 - - ResNet18 67.7%
SWALP [42] 8 | 8 | 8 - - ResNet18 65.1%

AMQ [7] 32 | 32 | 3 - - ResNet18 64.8%
TRN [39] 32 | 32 | 2 - - ResNet18 62.8%

Ours 8 | 8 | 8 64 D ResNet18 61.5%
Ours 4 | 4 | 4 32 D ResNet18 57.1%
FP32 32 - - ResNet18 69.7%

Table 4: Results of running AlexNet and ResNet18 on Ima-
geNet using different methods. We can achieve FP32 results
using only 4 bits for weights, activations and gradients.

level VHDL [13]) a wide range of BFP operations (used
in both of our methods) and floating point arithmetic op-
erators, and synthesized these to a current production 10nm
FinFET library with a target frequency of 800MHz. We also
compared a subset of results to Synopsys DesignWare [33]
components synthesized with the same libraries and scripts;
both methods were always within 10% area. We report area
in Table 5: the “Mantissa Multiplier” corresponds to the
area cost of multiplying the mantissa portion of the formats;
the “FP Multiplier” includes also the operations needed to
include the exponent part of the floating point formats; the
“FP ALU” is the cost of accumulating the result of the mul-
tiplications in the block; the “Cost” is the sum of the “FP
Multiplier” and the “FP ALU”. ‘Relative Cost” is the nor-
malized “Cost” to the smallest operation. To more accu-
rately model the area of these operators, we built a system
level construct for each, with pipeline registers before and
after the floating point operators. Additionally, FP ALUs
also had wrapped multiplexers to model the cost of the dy-
namic selection of addition and accumulation operations.
The BFP functions were implemented as tensors of 10 ele-
ment dot products, again bounded by registers [21]; the cost
of the fixed to floating point conversions is included in the
table, amortised over the tensor per multiplier.

From Table 5, it can be seen that the BFP formats are by
far the smallest. For INT8, we use 10x less area than FP32,

Mantissa
Multiplier

FP
Multiplier

FP
ALU

Cost
Relative

Cost

FP32 1561 1861 150 1 336 37
TF32 [29] 32 1 522 90 142 16

Bfloat16 [38] 19 1 40 2 150 190 21
FP16 [12] 32 1 40 2 70 110 12
FP8 [37] 6 1 20 2 302 50 5.6

INT8 BFP 15 1 15 10 25 2.8
INT4 BFP 4 1 4 5 9 1

1 Run on Synopsys DC 2 Estimated

Table 5: Comparison of cost in different number formats.

and we are also at least 2x more efficient than the common
formats used for training, such as TF32 [29], BFloat16 [38],
and FP16 [12]. In terms of relative cost, we are also 2x more
efficient than the emerging FP8 format [37]. The differ-
ence is still larger when using INT4. Saving half of the area
means that we can pack twice the number of operations,
which corresponds to approximately twice the throughput.

The importance of area goes beyond saving silicon,
power, and increased throughput. Memory accesses are
very expensive [10], with 1 or 2 orders of magnitude for
local embedded SRAM (based on analysis of cache mem-
ory at 45nm), and 3 or 4 orders of magnitude for DRAM
access. HyperBFP has the potential of getting further ben-
efits from memory accesses when comparing to DirectBFP
for example, since the same quantized tensor can be used in
both forward pass and backward passes, without the need
to retrieve expensive FP32 values as is the case when us-
ing DirectBFP. The more processing we can perform in the
arithmetic datapath, the more efficient the system will be.

6. Conclusion

We have demonstrated that DirectBFP and its Hy-
perBlock variant can be used for quantizing gradients
during training of convolutional neural networks. We
have achieved virtually no loss of accuracy when train-
ing AlexNet on the challenging ImageNet dataset, by using
multiplications in fixed-point, and a smaller number of addi-
tion using floating point format. We believe that this opens
up space for efficient implementation in custom hardware
of low bit training and inference.
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