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A. Additional Implementation Details

A.1. Object Detection

We employ the one-stage anchor-free CenterNet [99]
detection approach for the object detector. CenterNet has
shown high performance on the widely-used object detec-
tion dataset, MSCOCO [42]. Given feature map F extracted
by the backbone, the objection detection head outputs three
feature maps: (1) a heatmap indicating the centers and cate-
gories of the objects, (2) a center offset to deal with the pre-
cision error caused by the output stride, and (3) the objects’
width and height. To better understand how the ground-truth
feature maps are generated, let the objects in a scene be rep-
resented by a category c and bounding box b = [xc, yc, w, h]
where xc and yc are the center locations and w and h are the
width and height respectively. The object center heatmap
Ho ∈ [0, 1]Co×H

s ×W
s , where Co is the number of object

categories, indicates the location of the objects in an image.
Following Zhou et al. [99], the object center heatmap is gen-
erated by applying a Gaussian kernel at every downsampled
object location based on the following equation:
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where σ changes with the size of the object. Since the
output heatmap is downsampled, a discretization error occurs
when remapping the predicted centers to their location in
the input image. This affects the location of the bounding
boxes, especially for small objects. Thus, an offset map
θ ∈ R2×H

s ×W
s is built that outputs the precise offset lost

due to downsampling:
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The third output map B ∈ R2×H
s ×W

s predicts the width
and height of the objects at the downsampled center location
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A.2. Relationship Detection

Our Composite Relationship Fields (CoRF) are intro-
duced to represent the relationships between pairs of objects.
The relationship detection head predicts an output map ap

for every relationship category p. For every location (i, j)
in the output map and relationship p, CoRF is represented
as follows: apij = [c, xs, ys, xo, yo, ss, so]

p
ij . For example,

assume a predicate r exists between the relationship subject
with bounding box bs = [xs

c, y
s
c , w

s, hs] and the relationship
object with bounding box bo = [xo

c , y
o
c , w

o, ho] where xc

and yc are the center locations of the downscaled bound-
ing boxes and w and h are their width and height respec-
tively. For every location (i, j) in the region between the
two centers (xs

c, y
s
c) and (xo

c , y
o
c ) and for predicate r, arij is

represented as follows:

c = 1, xs = xs
c − j, ys = ysc − i,

xo = xo
c − j, yo = yoc − i,

ss = 0.1 ·min(ws, hs) so = 0.1 ·min(wo, ho),

Figure 3 in the main paper shows the different components
of the CoRF for the predicate throwing. The blue vectors
represent the vectors vs = (xs, ys) pointing towards the re-
lationship subject and the green vectors represent the vectors
vo = (xo, yo) pointing towards the relationship object.

A.3. Implementation and Training Details

We report results with a convolutional backbone: ResNet-
50 [20], and a Transformer backbone: Swin-S [48]. These
backbones are pretrained on ImageNet [61] and modified to
output a feature map of stride 16. For ResNet, we increase
the feature map resolution to stride 16 by dilating the C5
stage, as in [1]. For Swin, we first upsample the last feature
map of stage 4 to stride 16. Then, we project the last feature
map of stage 3 to C channels (with C = 768 for Swin-S) and
add it to the upsampled stage 4 feature map before applying
one 3× 3 convolution to the combined feature map, similar
to [41].

All models are trained using AdamW [2] for 60 epochs
with a learning rate of 10−4 for the heads and 10−5 for the
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(a) CoRF (b) CoRF + Deform (c) CoRF + S.Deform (d) CoRF + TR

Figure 1: Illustration of the refinement heads. Architecture of the different refinement heads used in the ablation study.

Figure 2: Illustration of the Relationship Alignment Mod-
ule (RAM). RAM is made up of three parallel layers each
responsible for a component in a relationship triplet <subject,
predicate, object>. All convolution layers have a 1x1 kernel.
The channel dimension is indicated on the connections, e.g.,
256x. R is the number of relationship categories.

Figure 3: Illustration of the Transformer Encoder. The
Transformer encoder of each refinement head consists of 6
Transformer blocks. Each Transformer block consists of a
multi-head self-attention layer (MHSA) followed by a point-
wise multilayer perceptron (MLP), with skip-connections
and normalization layers. See Section 3.3 for more details.

backbone [4]. The learning rates are decreased by a factor
of 10 at epochs 40 and 50. We train our models on 4 V100
GPUs with 10 images per GPU for a total batch size of
40. We apply standard data augmentations techniques of
random scaling, cropping, and horizontal flipping, similar
to FCSGG [47]. All models are trained and evaluated on
images of resolution 512× 512.

A.4. Refinement Heads

We study the effect of different refinement heads to verify
that Transformers are suitable for the task of scene graph
generation. The different refinement heads are illustrated in
Fig. 1. The baseline model (CoRF) has four 3x3 convolution
layers each separated by a batch normalization (BN) and
a ReLU (not shown in the figure for compactness). We
also study the performance of using deformable convolution
layers [8] instead of traditional ones for the relationship
detection head (CoRF + Deform). Deformable convolution
layers were introduced to deal with the fixed receptive fields
of traditional convolution layers. In essence, they allow the
model to attend to different spatial locations in the scene,
making it a suitable attention mechanism.

Since the relationship head needs to predict, at every lo-
cation, the relationship between a subject and object, we
introduce another refinement head that aligns the features
of the subject, predicate, and object. The primary moti-
vation behind our proposed refinement is that these three
components are highly correlated. It is achieved by adding
a relationship alignment module (RAM) after the four con-
volution layer in the relationship head (CoRF + S.Deform).
This module consists mainly of supervised deformable con-
volutions. RAM enriches the feature vector responsible for
relationship prediction using information from the related
subjects and objects at every location. Essentially, RAM
applies the following equation to output the refined feature
map F at location x, y:

Fx,y = W ·(FP ⊕ FS ⊕ FO)

= W ·[(Wr · Fx,y)︸ ︷︷ ︸
predicate

⊕ (Ws · Fx+Sx
x,y,y+Sy

x,y
)︸ ︷︷ ︸

subject

⊕ (Wo · Fx+Ox
x,y,y+Oy

x,y
)︸ ︷︷ ︸

object

] (3)

where Fx,y is the feature at location (x, y), Sx
x,y and Sy

x,y

are the vector coordinates of the subject relative to loca-
tion (x, y), and Ox

x,y and Oy
x,y are the vector coordinates

of the objects relative to location (x, y). Ws, Wo, Wr are



the learned subject, object, and predicate transformation ma-
trices to produce FS , FO, and FP respectively. RAM is
illustrated in Figure 2. Compared to deformable convolu-
tions, the main modification in our implementation is that we
supervise the kernel offsets by adding them directly to the
CoRF of the relationship head. This forces the deformable
layer to attend specifically to the location of the subject and
object rather than learning where to attend to.

Lastly, we also study the performance when using only a
Transformer encoder in the relationship head (CoRF + TR).
The Transformer encoder used in both CoRF + TR and CoRF
+ T is illustrated in Figure 3.

B. Inference Speed
We report the inference speed of additional top-down

SGG methods and compare them to our model (Table 1). All
models are tested on the NVIDIA GeForce GTX 1080 Ti
GPU. All our models maintain a real-time performance while
improving performance compared to previous bottom-up
approaches, which shows their efficiency. Thus, our method
proves to be computationally efficient without compromising
performance. As shown in the table, the inference speed
remains almost the same when evaluating BGNN [36] under
two different input sizes. This is expected for top-down
methods since the main bottleneck is performing relationship
prediction on a large number of pairs of detected objects,
which is independent of the input size.

Method Backbone Input Size img/sec

To
p-

do
w

n

VCTree-TDE [67] RNXt101-FPN 600× 1000 1

KERN [5] VGG16 592× 592 1

MOTIFS-TDE [67] RNXt101-FPN 600× 1000 1

MOTIFS-TDE [67] RNXt-101-FPN 512× 512 1.1

GB-NET-β [90] VGG16 592× 592 2

MOTIFS [67] RNXt101-FPN 600× 1000 2

VTransE-TDE [67] RNXt101-FPN 600× 1000 2

Graph R-CNN [84] VGG16 800× 1024 5

BGNN [36] RNXt-101-FPN 600× 1000 1.4

BGNN [36] RNXt-101-FPN 512× 512 1.8

B
ot

to
m

-u
p

Px2Grp [55] Hourglass-104 512× 512 0.2

FCSGG [47] HRNet-W38 512× 512 14

FCSGG [47] HRNet-W48 512× 512 13

FCSGG [47] RN50-FPN×2 512× 512 25

CoRF RN50 512× 512 30

CoRF + T RN50 512× 512 22

CoRF Swin-S 512× 512 20

CoRF + T Swin-S 512× 512 15

Table 1: Inference speed for different SGG methods. All
methods are tested on a NVIDIA GeForce GTX 1080 Ti
GPU with batch size of 1.

Figure 4: Illustration of Ground-truth Detections Injec-
tion. The Transformer encoder of each refinement head
takes as input the concatenation of the flattened backbone
features and ground-truth detection tokens when evaluating
PredCls and SGCls.

C. Positional Encodings
As mentioned in the main paper, we study the effect

of different positional encodings added to the input of the
Transformer. Using learnable 1D or 2D positional encodings
did not lead to any significant gain in performance over fixed
sinusoidal + absolute position encodings (Table 2).

D. Ground-Truth Detection Injection
In PredCls and SGCls settings, the relationship head

should only be evaluated for its ability to classify the re-
lationship and both object and relationship, respectively. To
compare with previous work (e.g. Px2Graph [55]), we need
to provide our model with ground-truth object annotations
when evaluating PredCls and SGCls. The annotations are
provided as additional input tokens to the Transformer mod-
ules of both the detection and relationship head during train-
ing and testing following the same hyperparameters reported
in the paper. The mechanism is visualized in Figure 4. For
the SGCls protocol, a token is created for every ground-truth
object that contains the object’s location and bounding box
size. For PredCls, this vector also contains an embedding
indicating the category of the object. Each category has
a different embedding that is learned while training. Posi-
tional encoding is also added to these tokens to encode their
locations, similar to the image features. In addition to the de-
scribed ground-truth tokens, the relationship head is passed
all possible object pair vectors, similar to how top-down
methods predict the relationship between all pairs of objects.
This is achieved by creating a token for every object pair
in the ground-truth annotations, which encodes the location
of the corresponding objects. To clarify, for every pair of
objects in the ground-truth annotations, a token encoding
the locations of the pair of corresponding objects is passed



PredCls

AP0.5 R@50 ng-R@50

Learned 1D 20.9 43.9 56.3

Learned 2D 21.1 43.6 56.2

Fixed (Sine + Abs. Pos) 21.9 44.4 56.8

Table 2: Performance using different positional encod-
ings. Fixed sinusoidal + absolute position encodings perform
slightly better than learnable encodings for both object detec-
tion (AP0.5) and relationship detection (PredCls). We do not
observe any significant difference in performance between
learnable 1D and learnable 2D positional encodings

.

to the relationship head. This is done for every object pair,
whether there exists a ground-truth relationship or not. It al-
lows our relationship head to focus mainly on classifying the
relationship rather than also learning how to predict the ob-
ject’s location. These tokens are then concatenated with the
backbone features before passing them to the Transformer
modules( Figure 4).

E. Additional Visualizations
E.1. Attention Maps

We provide additional self-attention visualizations in Fig-
ure 5. We show visualizations of the last self-attention layer
of both the relationship head’s Transformer and the detec-
tion head’s Transformer, with both the ResNet-50 backbone
and the Swin-S backbone. The selected images are from
the Visual Genome test set. The images selected for the
Swin-S backbone are also used for the CoRF visualizations
(Appendix E.2).

We observe that the attention maps differ between the
heads. For the relationship head, the self-attention heads
attend to the cell’s surroundings and far-away objects that
are likely to be part of a relationship. The model is able to
learn, with the supervision of our CoRF connecting different
objects, that attending specifically to objects in the scene
improves relationship prediction. The attention maps for the
object detection head are much less interpretable, as some
self-attention heads attend to the corners and center of the
image while others attend to locations throughout the image.
Such differences indicate that the Transformer of the object
detection head needs to attend to different details compared
to the Transformer of the relationship head, motivating the
need for two separate encoders for each of these tasks.

We note that this difference in the attention maps is not
surprising; as for the relationship head, each cell of the
feature map has to identify surrounding objects and the rela-
tionships between them, while for the object detection head,

each cell only has to detect if it is at the center of an object
and, if so, the object’s class, height, and width.

E.2. Composite Relationship Fields

We show in Figures 6, 7, 8 qualitative results for different
sample images in the Visual Genome [31] test set. These
images were extracted by following the SGDet protocol [81].
The model used is CoRF + T, with Swin-S as the backbone.
We report the ground-truth object detection, ground-truth
scene graph, predicted object detections, and the composite
relationship fields for different predicates. In Figure 6d, the
green vectors with the red boxes point to the subject, and the
blue vectors with the green boxes point towards the object
of the relationship triplet <subject, predicate, object>.

In Figure 6, we can observe that our detector is able to
detect additional objects compared to the ground-truth anno-
tations, such as the building, lights, and windows. Moreover,
although the ground-truth scene graph contains relationships
between three objects in the scene, our method was able to
extract more relationships shown by the relationship fields
for every predicate. For example, our method is able to iden-
tify that the ’bus’ is ’parked on’ the ’street’ ( 6d). This shows
that our method perceives the image globally and generalizes
to other predicates. Another interesting observation is that
the relationship field for predicates ’has’ and ’of’ are similar
but with their object and subject vectors swapped. This in-
dicates that our model is able to deduce that a relationship
triplet <object A, has, object B> is equivalent to <object B,
of, object A>.

Similarly, Figures 7 and 8 demonstrate the generalizabil-
ity of our model, i.e. we are able to extract many more
relationships than the ones found in the ground-truth. These
figures also highlight an issue in the Visual Genome dataset:
object and predicate ambiguity. For example, in Figure 7b,
our object detector detected the three people in the scene as
’people’, ’person’, or ’guy’ as opposed to the ground-truth
’man’, ’girl’, and ’skier’. Although both labels can be cor-
rect, our model is penalized for such predictions. Another
common issue in the Visual Genome dataset is predicate
ambiguity. It occurs because the training dataset has similar
predicates, such as ’wears’ and ’wearing’.

F. Additional Results
As mentioned in Section 5, we report the detailed perfor-

mance of previous methods. Tables 3, 4, and 5 show the
Recall performance at K=20, K=50, and K=100, respectively
for both graph and no-graph constraint. These tables are
divided into top-down and bottom-up approaches. Further-
more, the top-down methods are further divided into meth-
ods that use external knowledge (top-part) such as linguis-
tic priors, knowledge bases, and statistical correlations be-
tween objects, and methods that only use visual information
(bottom-part). As observed, our method outperforms previ-



ous bottom-up approaches, especially at K=20 and K=50,
indicating that correct relationships are ranked higher than
incorrect ones. Our method also achieves competitive results
compared to top-down visual-only methods (CoRF+T+).
Other methods use external knowledge that increases perfor-
mance and especially helps deal with relationships with few
instances. We focus in our work on improving visual-only
bottom-up approaches using Composite Relationship Fields
and our Transformer-based refinement head.

Similarly, Tables 8, 6 and 7 show the the mean-Recall
at K=20, K=50, and K=100, respectively. We observe that
our method is still able to outperform previous bottom-up
methods indicating that our model can generalize and deal
with the long-tail distribution of Visual Genome [31]. It
is important to note that the top-down methods mentioned
in the tables apply techniques such as sampling strategies,
external knowledge, etc., to specifically improve mean recall.
These strategies aid in distinguishing between relationships
that are close visually, such as laying on and lying on. These
relationships are challenging for methods relying on visual-
only input, similar to our method and FCSGG [47].

We also report the zero-shot performance at K=50 and
K=100 (Table 9 and 10). This also verifies the benefits of
CoRF and the refinement head in helping the model gener-
alize to unseen relationships. Previous top-down methods
reporting zero-shot performance apply a debiasing technique
(TDE [67]) to improve their method’s zero-shot metric. Our
method only relies on visual information.

G. Limitations
Our method is highly limited by the performance of the

detection task. For a fair comparison with previous work, we
have used the same popular method [99] which is not nec-
essarily competitive with top-down methods. Hence, future
work should address this limitation by potentially leverag-
ing other detection datasets to improve the performance of
bottom-up detectors. Moreover, the Visual Genome dataset
suffers from many issues, such as missing or similar anno-
tations and highly biased distribution, which can negatively
affect training. The effect also differs between top-down and
bottom-up methods. In addition, our current performances
should be further improved if our method is to be used for
safety-critical applications such as autonomous navigation.

Societal impact. Any SGG method can be used in surveil-
lance to visually understand an environment. However, our
method does not use or store any identifying information.
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Figure 5: Attention maps from the relationship head and object detection head. For a given reference point, the attention
maps from all heads of the last self-attention layer of the Transformer are shown. We show attention maps for both backbones:
ResNet-50 and Swin-S, from both the relationship head’s Transformer and the object detection head’s Transformer.



(a) GT detections (b) Predicted detections

(c) GT Scene Graph

(d) Composite Relationship Fields for different predicates

Figure 6: Qualitative results for image 2343440.jpg. Our model is able to detect the relationship ’parked on’ between the bus
and the street. It also predicted that the bus ’has’ windows. It was even able to detect the relationship ’wearing’ between the
pedestrians and their pants. GT= Ground-Truth. (Images are enlarged for better viewing)



(a) GT detections (b) Predicted detections
(c) GT Scene Graph

(d) Composite Relationship Fields for different predicates

Figure 7: Qualitative results for image 2334989.jpg. Our model is able to analyze the scene and detect more relationships
between objects such as ’holding’, ’has’, and ’behind’. GT= Ground-Truth. (Images are enlarged for better viewing)



(a) GT detections (b) Predicted detections

(c) GT Scene Graph

(d) Composite Relationship Fields for different predicates

Figure 8: Qualitative results for image 2343342.jpg. Our model is able to analyze the scene and detect more relationships
between objects such as ’above’, ’riding’, ’sitting on’, and ’behind’. GT= Ground-Truth. (Images are enlarged for better
viewing)



PredCls SGCls SGDet

Method Backbone AP0.5 R@20 ng-R@20 R@20 ng-R@20 R@20 ng-R@20

To
p-

do
w

n

VCTree [68] VGG16 [64] – 60.1 – 35.2 – 22.0 –

GPS-Net [43] VGG16 [64] – 67.6 – 41.8 – 22.3 –

RelDN [96] VGG16 [64] 25.5 66.9 – 36.1 – 21.1 –

MotifsTDE [67] RNXt101-FPN 28.1 33.6 – 21.7 – 12.4 –

MotifNet [93] VGG16 [64] 20.0 58.5 – 32.9 – 21.4 –

NLS [98] RNXt101-FPN – 58.7 – 36.5 – 24.6 –

CISC [77] VGG16 [64] – 42.1 – 23.3 – 7.7 –

LinkNet [78] VGG16 [64] – 61.8 – 38.3 – 22.3 –

Seq2Seq [50] VGG16 [64] – 60.3 – 34.5 – 22.1 –

B
ot

to
m

-u
p

Px2Graph⋆ [55] Hourglass-104 [56] – 47.9 – 18.2 – 6.5 –

FCSGG [47] HRNet-W32 [74] 21.6 27.6 32.2 12.3 13.5 11.0 12.4

FCSGG [47] HRNet-W48 [74] 25.0 24.2 28.1 13.6 14.2 11.5 12.7

FCSGG [47] RN50-FPN×2 23.0 28.0 31.6 13.9 14.8 11.4 12.2

CoRF [Ours] RN50 19.6 36.0 40.6 13.6 13.7 11.6 13.9

CoRF + T [Ours] RN50 21.9 38.2 43.4 15.9 16.0 13.3 15.9

CoRF [Ours] Swin-S 23.8 38.5 43.5 16.1 16.4 14.6 17.4

CoRF + T [Ours] Swin-S 24.7 39.3 44.9 17.3 17.7 15.3 18.0

CoRF + T+ [Ours] RN50 21.9 56.7 67.9 27.7 32.9 13.3 15.9

CoRF + T+ [Ours] Swin-S 24.7 56.5 67.7 29.6 35.2 15.3 18.0

Table 3: Recall@20 for graph (R@20) and no-graph constraint (ng-R@20) on Visual Genome [31]. ⋆ indicates that
[55] trained a different model for each metric. RN50 = ResNet50[20]. RNXt101 = ResNeXt-101 [80]. FPN = Feature
Pyramid Network [41]. FPN×2 indicates that a separate FPN is used for detection and relationship. Our proposed CoRF has
convolutions in both heads (Sec. 6), while CoRF + T has a Transformer encoder in both heads. +: GT detections given to
Transformer in PredCls and SGCls to compare with Px2Graph.



PredCls SGCls SGDet

Method Backbone AP0.5 R@50 ng-R@50 R@50 ng-R@50 R@50 ng-R@50

To
p-

do
w

n

VRD [49] VGG16 [64] – 27.9 – 11.8 – 0.3 –

VCTree [68] VGG16 [64] – 66.4 – 38.1 – 27.9 –

KERN [5] VGG16 [64] – 65.8 81.9 36.7 45.9 27.1 30.9

GPS-Net [43] VGG16 [64] – 69.7 – 42.3 – 28.9 –

RelDN [96] VGG16 [64] 25.5 68.4 93.8 36.8 48.9 28.3 30.4

MotifsTDE [67] RNXt101-FPN 28.1 46.2 – 27.7 – 16.9 –

MotifNet [93] VGG16 [64] 20.0 65.2 – 35.8 – 27.2 –

GB-NET-β [90] VGG16 [64] – 66.6 83.5 37.3 46.9 26.3 29.3

PI-SG [21] – – 65.1 80.8 36.5 45.5 – –

NLS [98] RNXt101-FPN – 65.6 – 40.0 – 31.8 –

IMP [81] VGG16 [64] – 44.8 – 21.7 – 3.4 –

Graph R-CNN [84] VGG16 [64] 23.0 54.2 – 29.6 – 11.4 –

VRF [12] RN50 – 56.7 – 23.7 – 13.2 –

CISC [77] VGG16 [64] – 53.2 – 27.8 – 11.4 –

LinkNet [78] VGG16 [64] – 67.0 – 41 – 27.4 –

Seq2Seq [50] VGG16 [64] – 66.4 83.6 38.3 46.9 30.9 30.9

BGNN [36] RNXt101-FPN – 59.2 – 37.4 – 31.0 –

B
ot

to
m

-u
p

Px2Graph⋆ [55] Hourglass-104 [56] – 54.1 68.0 21.8 26.5 8.1 9.7

FCSGG [47] HRNet-W48 [74] 25.0 31.0 40.3 17.1 19.6 15.5 18.3

FCSGG [47] HRNet-W32 [74] 21.6 34.9 46.3 15.5 19.3 15.1 18.2

FCSGG [47] RN50-FPN×2 23.0 35.8 44.7 17.7 20.6 15.7 18.0

CoRF [Ours] RN50 19.6 42.3 53.9 14.8 18.3 14.5 17.6

CoRF + T [Ours] RN50 21.9 44.4 56.8 17.2 21.3 16.5 20.2

CoRF [Ours] Swin-S 23.8 44.8 56.9 17.5 21.6 17.9 22.0

CoRF + T [Ours] Swin-S 24.7 45.4 58.1 18.7 23.4 18.6 22.9

CoRF + T+ [Ours] RN50 21.9 60.5 78.8 28.6 36.1 16.5 20.2

CoRF + T+ [Ours] Swin-S 24.7 60.2 78.5 30.5 38.8 18.6 22.9

Table 4: Recall@50 for graph (R@50) and no-graph constraint (ng-R@50) on Visual Genome [31]. ⋆ indicates that
[55] trained a different model for each metric. RN50 = ResNet50[20]. RNXt101 = ResNeXt-101 [80]. FPN = Feature
Pyramid Network [41]. FPN×2 indicates that a separate FPN is used for detection and relationship. Our proposed CoRF has
convolutions in both heads (Sec. 6), while CoRF + T has a Transformer encoder in both heads. +: GT detections given to
Transformer in PredCls and SGCls to compare with Px2Graph.



PredCls SGCls SGDet

Method Backbone AP0.5 R@100 ng-R@100 R@100 ng-R@100 R@100 ng-R@100

To
p-

do
w

n

VRD [49] VGG16 [64] – 35.0 – 14.1 – 0.5 –

VCTree [68] VGG16 [64] – 68.1 – 38.8 – 31.3 –

KERN [5] VGG16 [64] – 67.6 88.9 37.4 49.0 29.8 35.8

GPS-Net [43] VGG16 [64] – 69.7 – 42.3 – 33.2 –

RelDN [96] VGG16 [64] 25.5 68.4 97.8 36.8 50.8 32.7 36.7

MotifsTDE [67] RNXt101-FPN 28.1 51.4 – 29.9 – 20.3 –

MotifNet [93] VGG16 [64] 20.0 67.1 – 36.5 – 30.3 –

GB-NET-β [90] VGG16 [64] – 68.2 90.3 38.0 50.3 29.9 35.0

PI-SG [21] – – 66.9 88.2 38.8 50.8 – –

NLS [98] RNXt101-FPN – 67.4 – 40.8 – 36.3 –

IMP [81] VGG16 [64] – 53.8 – 24.4 – 4.2 –

Graph R-CNN [84] VGG16 [64] 23.0 59.1 – 31.6 – 13.7 –

VRF [12] VGG16 [64] – 57.2 – 24.7 – 13.5 –

CISC [77] VGG16 [64] – 57.9 – 29.5 – 13.9 –

LinkNet [78] VGG16 [64] – 68.5 – 41.7 – 30.1 –

BGNN [36] RNXt101-FPN – 61.3 – 38.5 – 35.8 –

Seq2Seq [50] VGG16 [64] – 68.5 90.8 39.0 51.2 34.4 37.0

B
ot

to
m

-u
p

Px2Graph⋆ [55] Hourglass-104 [56] – 55.4 75.2 22.6 30.0 8.2 11.3

FCSGG [47] HRNet-W32 [74] 21.6 38.5 56.6 17.2 23.6 18.1 23.0

FCSGG [47] HRNet-W48 [74] 25.0 34.6 50.0 18.8 24.0 18.4 23.0

FCSGG [47] RN50-FPN×2 23.0 40.2 54.8 19.6 25.0 19.0 22.8

CoRF [Ours] RN50 19.6 44.1 62.4 14.9 20.6 15.9 19.9

CoRF + T [Ours] RN50 21.9 46.0 65.1 17.4 23.6 18.1 22.6

CoRF [Ours] Swin-S 23.8 46.7 65.2 17.7 23.9 19.4 24.5

CoRF + T [Ours] Swin-S 24.7 47.1 66.3 18.9 25.8 20.0 25.4

CoRF + T+ [Ours] RN50 21.9 61.1 83.5 28.7 37.3 18.1 22.6

CoRF + T+ [Ours] Swin-S 24.7 60.8 83.2 30.6 40.0 20.0 25.4

Table 5: Recall@100 for graph (R@100) and no-graph constraint (ng-R@100) on Visual Genome [31]. ⋆ indicates
that [55] trained a different model for each metric. RN50 = ResNet50[20]. RNXt101 = ResNeXt-101 [80]. FPN = Feature
Pyramid Network [41]. FPN×2 indicates that a separate FPN is used for detection and relationship. Our proposed CoRF has
convolutions in both heads (Sec. 6), while CoRF + T has a Transformer encoder in both heads. +: GT detections given to
Transformer in PredCls and SGCls to compare with Px2Graph.



PredCls SGCls SGDet

Method Backbone mR/ng-mR mR/ng-mR mR/ng-mR

To
p-

do
w

n

KERN [5] VGG16 17.7/– 9.4/– 6.4/–

VCTree [68] VGG16 17.9/– 10.1/– 6.9/–

GB-NET-β [90] VGG16 22.1/– 12.7/– 7.1/–

NLS [98] RNXt101-FPN 17.7/– 10.4/– 7.3/–

ResCAGCN [83] VGG16 20.2/– 11.9/– 7.7/–

VCTree-Seg [26] RNXt101-FPN 19.2/– 11.6/– 8.1/–

MOTIFS-TDE [67] RNXt101-FPN 25.5/– 13.1/– 8.2/–

VCTree-TDE-EB [65] RNXt101-FPN 26.7/– 18.2/– 9.7/–

Seq2Seq [50] VGG16 26.1/– 14.7/– 9.6/–

BGNN [36] RNXt101-FPN 30.4/– 14.3/– 10.7/–

BA-SGG [19] RNXt101-FPN 31.9/– 18.5/ – 14.8/–

B
ot

to
m

-u
p

FCSGG HRNet-W32 5.5/9.7 2.5/4.4 2.4/3.6

FCSGG HRNet-W48 5.2/9.5 2.9/6.3 2.6/4.7

FCSGG RN50-FPN×2 5.7/11.3 2.9/6.0 3.2/5.7

CoRF RN50 8.1/17.0 2.7/5.4 2.7/5.8

CoRF + T RN50 9.5/20.0 3.4/6.8 3.5/7.6

CoRF Swin-S 9.3/19.2 3.3/6.9 3.5/7.9

CoRF + T Swin-S 10.1/21.7 3.9/8.3 3.9/9.2

CoRF + T+ RN50 13.5/34.9 5.0/11.7 3.5/7.6

CoRF + T+ Swin-S 14.2/35.6 5.6/13.3 3.9/9.2

Table 6: Mean recall performance (@50). We compare
mean recall@50 for both graph (mR) and no-graph (ng-mR)
constraint on Visual Genome [31]. CoRF has convolutions
in both heads (Sec. 6), CoRF + T has a Transformer encoder
in both heads. +: GT detections given to Transformer in
PredCls and SGCls

PredCls SGCls SGDet

Method Backbone mR/ng-mR mR/ng-mR mR/ng-mR

To
p-

do
w

n

KERN [5] VGG16 19.4/– 10.0/– 7.3/–

VCTree [68] VGG16 19.4/– 11.8/– 8.0/–

GB-NET-β [90] VGG16 24.0/– 13.4/– 8.5/–

NLS [98] RNXt101-FPN 19.5/– 11.1/– 8.7/–

ResCAGCN [83] VGG16 22.0/– 12.8/– 8.9/–

VCTree-Seg [26] RNXt101-FPN 21.1/– 12.3/– 9.0/–

GPS-Net [43] VGG16 22.8/– 12.6/– 9.8/–

MOTIFS-TDE [67] RNXt101-FPN 29.1/– 14.9/– 9.8/–

VCTree-TDE-EB [65] RNXt101-FPN 30.0/– 20.5/– 11.6/–

Seq2Seq [50] VGG16 30.5/– 16.2/– 12.1/–

BGNN [36] RNXt101-FPN 32.9/– 16.5/– 12.6/–

BA-SGG [19] RNXt101-FPN 34.2/– 19.4/ – 17.1/–

B
ot

to
m

-u
p

FCSGG HRNet-W32 6.3/13.6 2.8/6.2 2.9/4.9

FCSGG HRNet-W48 6.1/14.7 3.4/9.4 3.1/6.9

FCSGG RN50-FPN×2 6.7/16.6 3.3/8.3 3.3/6.8

CoRF RN50 9.1/24.5 2.8/7.2 3.1/7.2

CoRF + T RN50 10.5/28.1 3.5/8.8 4.1/9.3

CoRF Swin-S 10.4/27.5 3.4/9.1 4.0/9.7

CoRF + T Swin-S 11.3/29.9 4.0/10.3 4.5/10.9

CoRF + T+ RN50 14.4/46.1 5.1/13.4 4.1/9.3

CoRF + T+ Swin-S 14.9/46.6 5.1/15.4 4.5/10.9

Table 7: Mean recall performance (@100). We compare
mean recall@100 for both graph (mR) and no-graph (ng-mR)
constraint on Visual Genome [31]. CoRF has convolutions
in both heads (Sec. 6), CoRF + T has a Transformer encoder
in both heads. +: GT detections given to Transformer in
PredCls and SGCls

PredCls SGCls SGDet

Method Backbone mR/ng-m mR/ng-m mR/ng-mR

To
p-

do
w

n VCTree [68] VGG16 14.0/– 8.2/– 5.2/–
NLS [98] RNXt101-FPN 13.3/– 8.3/– 5.3/–
MOTIFS-TDE [67] RNXt101-FPN 18.5/– 9.8/– 5.8/–
VCTree-Seg [26] RNXt101-FPN 15.0/– 9.3/– 6.3/–
VCTree-TDE-EB [65] RNXt101-FPN 19.9/– 13.9/– 7.1/–
Seq2Seq [50] VGG16 21.3/– 11.9/– 7.5/–
BA-SGG [19] RNXt101-FPN 26.7/– 15.7/ – 11.4/–

B
ot

to
m

-u
p

FCSGG HRNet-W32 4.0/5.4 1.9/2.7 1.7/2.2
FCSGG HRNet-W48 3.7/5.2 2.2/3.5 1.8/2.7
FCSGG RN50-FPN×2 4.2/6.5 2.2/3.6 1.9/3.0

CoRF RN50 6.0/9.5 2.3/3.3 1.9/3.8
CoRF + T RN50 7.2/11.4 2.9/4.1 2.5/5.2

CoRF Swin-S 7.0/11.1 2.8/4.1 2.5/5.4
CoRF + T Swin-S 7.8/12.5 3.3/5.0 2.9/6.3

CoRF + T+ RN50 11.2/21.3 4.6/8.8 2.5/5.2
CoRF + T+ Swin-S 11.9/22.2 5.2/9.9 2.9/6.03

Table 8: Mean recall performance(@20). We compare
mean recall@20 for both graph (mR) and no-graph (ng-mR)
constraint on Visual Genome [31]. CoRF has convolutions
in both heads (Sec. 6), CoRF + T has a Transformer encoder
in both heads. +: GT detections given to Transformer in
PredCls and SGCls

PredCls SGCls SGDet

Method Backbone zsR/ng-zsR zsR/ng-zsR zsR/ng-zsR

To
p-

do
w

n VTransE-TDE [67] RNXt101-FPN 13.3/– 2.9/– 2.0/–
Motifs-TDE [67] RNXt101-FPN 14.4/– 3.4/– 2.3/–
VCTree-TDE [67] RNXt101-FPN 14.3/– 3.2/– 2.6/–
VCTree-TDE-EB [65] RNXt101-FPN 15.1/– 6.4/– 2.7/–

B
ot

to
m

-u
p

FCSGG RN50-FPN×2 8.2/11.7 1.3/2.4 0.8/1.0
FCSGG HRNet-W32 8.3/12.9 1.0/2.3 0.6 /1.2
FCSGG HRNet-W48 8.6/12.8 1.7/ 2.9 1.0/1.8

CoRF RN50 10.5/16.3 1.5/3.2 0.4/1.1
CoRF + T RN50 11.6/18.2 1.8/4.0 0.8/1.4

CoRF Swin-S 11.1/18.0 1.9/3.5 1.1/2.2
CoRF + T Swin-S 11.3/18.8 1.9/3.8 1.2/2.6

CoRF + T+ RN50 14.8/28.7 1.9/4.5 0.8/1.4
CoRF + T+ Swin-S 14.5/28.5 2.5/5.8 1.2/2.6

Table 9: Zero-shot performance (@50). We compare zero-
shot recall@50 for both graph (zR) and no-graph (ng-zR)
constraint on Visual Genome [31]. CoRF has convolutions
in both heads (Sec. 6), CoRF + T has a Transformer encoder
in both heads. +: GT detections given to Transformer in
PredCls and SGCls

PredCls SGCls SGDet

Method Backbone zsR/ng-zsR zsR/ng-zsR zsR/ng-zsR

To
p-

do
w

n VCTree-Seg [26] RNXt101-FPN 10.6/– 2.5/– 1.5/–
VTransE-TDE [67] RNXt101-FPN 17.6/– 3.8/– 2.7/–
Motifs-TDE [67] RNXt101-FPN 18.2/– 4.5/– 2.9/–
VCTree-TDE [67] RNXt101-FPN 17.6/– 4.0/– 3.2/–

B
ot

to
m

-u
p

FCSGG RN50-FPN×2 8.2/11.7 1.3/2.4 0.8/1.0
FCSGG HRNet-W32 8.3/12.9 1.0/2.3 0.6 /1.2
FCSGG HRNet-W48 8.6/12.8 1.7/ 2.9 1.0/1.8

CoRF RN50 12.2/24.9 1.5/4.2 0.7/1.6
CoRF + T RN50 13.3/26.9 1.9/5.2 1.1/2.2

CoRF Swin-S 12.7/27.0 1.9/4.6 1.4/3.2
CoRF + T Swin-S 12.9/28.1 2.0/5.2 1.6/3.5

CoRF + T+ RN50 16.0/39.0 2.0/5.7 1.1/2.2
CoRF + T+ Swin-S 15.6/38.0 2.6/7.2 1.6/3.5

Table 10: Zero-shot performance (@100). We compare
zero-shot recall@100 for both graph (zR) and no-graph (ng-
zR) constraint on Visual Genome [31]. CoRF has convolu-
tions in both heads (Sec. 6), CoRF + T has a Transformer
encoder in both heads. +: GT detections given to Trans-
former in PredCls and SGCls


