
GEMS: Scene Expansion using Generative Models of Graphs - Supplementary

Rishi Agarwal1* Tirupati Saketh Chandra2∗ Vaidehi Patil3∗

Aniruddha Mahapatra4∗ Kuldeep Kulkarni5 Vishwa Vinay5

Stanford University, USA1 IIT Bombay, India2 UNC Chapel Hill, USA3

Carnegie Mellon University, USA4 Adobe Research, India5

rishia@stanford.edu tsaketh@iitb.ac.in vaidehi@cs.unc.edu

amahapat@andrew.cmu.edu {kulkulka, vvinay}@adobe.com

1. Training and Testing Algorithms
In this section, we present the pseudo code for training

1 and inference 2. We use the notation as described in our
main paper under problem description. fnode2edge is an ad-
ditional neural network (multi-layer perceptron) that is used
to transfer information from fnode to fedge, i.e. the hidden
state of fedge is initialized from the hidden state of fnode
using this transformation.

2. Selecting value of max prev node

Our method GEMS (and the baseline adapted from
GraphRNN) requires the EdgeRNN to predict edges be-
tween the newly generated node vi and the previous nodes
in the graph sequence. The number k, referred to as
max prev node, controls how many of the previously cho-
sen nodes to take into account for predictions, and is a hy-
perparameter of the underlying method. If the value of k
is set to a very large number, the model generates edges
much larger in number than that is expected in training dis-
tribution (see count predicted and count reference rows in
Table 1 in the main paper). If k is calculated to using the
method described by GraphRNN [10], we obtain k = 37 for
the Visual Genome dataset. This leads to generated graphs
containing large number of edges (29.53) compared to ref-
erence number of edges in training set (11.09), and most of
the edges are either degenerate or describe irrelevant rela-
tionships between the subject and object. To address this
problem we compute the value of k as the maximum degree
(out-degree + in-degree) of a node in a graph such that 99%
of nodes in all graphs in the training set have degree less
than or equal to k. By setting max prev node to k cho-
sen in this manner, we lose only a few distant relationships
between nodes in a graph. However, the use of BFS on max-
imal connected subgraphs in our Cluster-Aware BFS algo-

*The first four authors contributed equally to this work and was done
while authors were at Adobe Research.

Algorithm 1 GEMS Training Algorithm
Input: Dataset of Graphs G = {G1, G2, . . . , Gn}
Output: Learned functions fnode, fedge, fnode2edge

Initialize fnode, fedge, fnode2edge

for epoch in epochs do
for G ∈ G do

S ← Sπ(G)
S0, h

0
node ← SOS, hinit

for i ∈ 1 . . . nG + 1 do // nG + 1 for EOS token

pv̂i , h
i
node ← fnode(Si−1, h

i−1
node)

qi ← minq KL(q, pv̂i)− Ev∼q(f(v, vi))
start← max(1, i− k) // k is max prev node

h
(start−1)
edge ← fnode2edge(h

i
node) Initialize hidden

state of fedge
Li

edge ← 0
for j ∈ start . . . i− 1 do

pêi,j , h
temp
edge ← fedge(vi, vj , h

j−1
edge)

pêj,i , h
j
edge ← fedge(vj , vi, h

temp
edge)

Li
edge ← Li

edge + ledge(pei,j , pêi,j)

Li
edge ← Li

edge + ledge(pej,i , pêj,i)
end for
Li

node ← lnode(pvi , pv̂i)
end for
L(G)← LnG+1

node +
∑

i∈1...nG

Li
node + Li

edge

end for
Back-propagate loss and update weights of fnode, fedge, fnode2edge

end for // typically when validation loss is minimized

rithm ensures that the objects that are closely related in the
observed set of graphs appear together in sequence, further
reducing the chances of not retaining edges between nodes
which are related. As observed from Table 1 in main paper
GraphRNN*, which has max prev node = 6 for Visual
Genome, replicates the count of predicted edges in the gen-
erated graphs much more faithfully that GraphRNN. Hence,
we gain efficiency and improve performance at the cost of
a negligible number of relationships. From the plots of the

1

cumulative degree distribution in Figure 1, we observe that
k = 6 for Visual Genome k = 7 for VRD.

3. GraphRNN [10] for Scene Graph Expansion
(Baseline)

We use GraphRNN [10] as the baseline to compare
against our method, GEMS, for the task of scene graph
expansion. GraphRNN is an auto-regressive model that
converts a graph to a sequence, and then successively pre-
dicts nodes and edges according to the sequence. The se-
quencing method used in their work is BFS starting from
a randomly chosen node in the graph. This sequencing
method was possible because the graphs which they work
on are connected graphs, for which there is a valid BFS
tracersal. However, scene graphs used in our task (both
from Visual Genome [5] and VRD [7]) tend to have dis-
connected components. Additionally, the scene graphs that
we work with, contain bi-directional edges between nodes
(the datasets that GraphRNN was evaluated on contain only
undirected or unidirectional edges). To use their sequencing
method we convert the disconnected scene graphs to con-
nected scene graphs. More specifically, we add a dummy
node labelled image to each of the graphs, and connect this
image node with all other nodes (vi) in the graphs using
bidirectional dummy edges in image (from vi to image)
and contains (from image to vi) and then perform BFS
starting from any node in the graph. At inference time we
generate the graph using these dummy nodes and edges, and
then remove the dummy nodes and edges for evaluation. We
modify the original GraphRNN code to predict bidirectional
edges sequentially, i.e., for a newly generated node vi and
a previously generated node vj in the graph, the EdgeRNN
of GraphRNN first predicts the edge from vi to vj and then
the edge from vj to vi.

4. SceneGraphGen for Scene Graph Expan-
sion (Baseline)

We compare our method GEMS to SceneGraph-
Gen [2], which was primarily designed for unconditional
generation of scene graphs, for the task of scene graph
expansion. Since SceneGraphGen also predicts nodes
and the corresponding edges from previously generated
nodes in an auto-regressive manner, they require an
ordering method for converting graph to a sequence.
The authors suggest a random ordering to flatten the
graph into a sequence, and show that this performs best
compared to other ordering methods – we therefore
use the same ordering strategy while evaluating Scene-
GraphGen. For both Visual Genome and VRD we use
num node categories = 153, num edge categories =
55 and num node categories = 102,
num edge categories = 73 respectively, based on

Algorithm 2 GEMS Inference Algorithm
Input: Seed graph Gs; fnode, fedge, fnode2edge

Output: Expanded graph Ĝs

S ← Sπ(Gs); Ŝ0, h
0
node ← SOS, hinit

for i ∈ 1 . . . nGs do // Conditioning on the input

pv̂i , h
i
node ← fnode(Ŝi−1, h

i−1
node)

Ŝi ← Si

end for
repeat // Expanding the seed graph

i← i+ 1
pv̂i , h

i
node ← fnode(Ŝi−1, h

i−1
node)

v̂i ∼ pv̂i
start← max(1, i− k) // k is max prev node

h
(start−1)
edge ← fnode2edge(h

i
node)

for j ∈ start . . . i− 1 do
pêi,j , h

temp
edge ← fedge(v̂i, v̂j , h

j−1
edge)

pêj,i , h
j
edge ← fedge(v̂j , v̂i, h

temp
edge)

êi,j ∼ pêi,j , êj,i ∼ pêj,i
Êi,j ← (êi,j , êj,i)

end for
if v̂i is not EOS then

Ŝi ← (v̂i, Êi)
end if

until v̂i is EOS
Convert Ŝ into graph Ĝs

(a) Visual Genome

(b) VRD

Figure 1. Cumulative degree distribution for the two datasets,
Visual-Genome and VRD.

the dataset statistics. The other parameters for the models
were retained as provided in the official github repository
of SceneGraphGen https://scenegraphgen.github.io/. (Code
is currently not available).

Visual Genome
GraphRNN GraphRNN* GEMS (GloVe) GEMS (cskg)

MMD

Degree (x102) ↓ 47.47 16.44 2.11 16.71

Clustering (x102) ↓ 18.63 4.05 0.86 1.31

NSPDK* (x103) ↓ 22.6 5.10 1.21 2.71

Node Label (x104) ↓ 5.44 5.26 5.19 5.18
Edge Label (x102) ↓ 22.38 6.19 1.13 3.34

Node Metrics
Count Reference 11.09

Count Predicted 29.53 13.84 10.17 10.97

(Obj)K (x102) ↑ 83.7 86.9 92.9 85.9

Edge Metrics
Count Reference 5.01

Count Predicted 57.95 11.86 7.45 13.50

MEP (x102) ↑ 22.4 24.52 35.81 35.12

Novelty (x102) ↑ 12.26 57.59 75.75 68.96

Table 1. Comparison of 2 variants of our method, GEMS with glove embeddings and common-sense knowledge graph (cskg) [11] in
input and external knowledge loss with the baselines of GraphRNN [10] and GraphRNN* on Visual Genome dataset. For all MMD based
metrics, lower is better (↓). For the rest of the metrics, larger is better (↑). GraphRNN* refers to GraphRNN with max prev node = 6
(Visual Genome)

Visual Genome VRD
GraphRNN GraphRNN* SceneGraphGen GEMS GraphRNN GraphRNN* SceneGraphGen GEMS

Edge Metrics
(Trip)K (x102) ↑ 34.6 44.7 72.9 52.8 35.1 37.3 43.9 38.1

ZSEP (x102) ↑ 3.19 3.41 10.1 3.14 2.76 2.93 6.2 3.18

Table 2. Comparison of our method (GEMS) with the baselines of GraphRNN [10], GraphRNN* and SceneGraphGen [2] on Visual
Genome [5] and VRD [7] datasets on additional metrics, Top-K Triplet Co-occurrence ((Trip)K) and Zero-shot Edge Precision (ZSEP) .
For both the metrics, upper is better (↑). GraphRNN* refers to GraphRNN with max prev node = 6 and 7 for Visual Genome and VRD
respectively in Table 2. Note: red represents best and blue represents second best scores.

5. Common Sense Knowledge Graph Embed-
dings

We wanted to design a method that is agnostic to the type
of embeddings (both at the input level as well as in the loss
function as external knowledge) used to represent nodes and
relationships. Hence, we experiment with the use of embed-
dings derived from the Common-Sense Knowledge Graph
(CSKG, proposed in [11]), whose vocabulary is the same as
that of objects and relations in Visual Genome dataset. To
obtain the knowledge graph embeddings, we train ComplEx
model [9] using the OpenIE framework [3] on the CSKG.
Our hypothesis was that the nature of the information car-
ried in the knowledge graph and word embeddings would
be very different (co-occurrence in graph context, versus
in unstructured text). However, we did not observe signif-
icant differences in the end results obtained using CSKG
embeddings compared to GloVe embeddings [8]. Table
1 shows comparison in terms of metric values computed

on graphs generated by GEMS (using glove and common-
sense knowledge graph embeddings) with GraphRNN and
GraphRNN*.

6. Additional Proposed Metrics
In this section we describe the novel metrics that we

have proposed for the evaluation of expanded scene graphs.
We also provide the metric values computed on base-
lines GraphRNN, GraphRNN* and SceneGraphGen, and
our model (GEMS) for Visual Genome [5] and VRD [7]
datasets.

6.1. Top-K Triplet Co-occurrence

(Trip)k The co-occurrence of a triple (Subject, Predi-
cate, Object) in a set of graphs is calculated as the condi-
tional probability of the predicate connecting the subject,
object pair given that the pair is present. We compare the co-
occurrence of the K-most commonly observed triples in the
test set with the co-occurrence of the corresponding triples

in the generated set of graphs as follows:

(Trip)K = 1− 1

K

∑
vi,ej ,vk ∈
topk(Ptest)

| Ptest[i, j, k]−Pgen[i, j, k] | (1)

Here, Ptest (Pgen) is a matrix such that entry (i, j, k) is the
co-occurrence of the triple (vi, ej , vk) in the test set (gen-
erated set respectively). In combination with the other met-
rics, (Trip)K rewards a model that generates graphs con-
taining coherent relations between two objects with similar
probabilistic distribution as observed in training set. Note
that a trigram MMD metric that compares the triplet dis-
tributions in the real and generated sets would achieve the
same purpose. However, given the computational complex-
ity of computing such an MMD-based metric, we propose
the metric as defined above.

6.2. Zero-Shot Edge Precision

ZSEP This is a metric inspired from zero shot learn-
ing [1, 6] to compute the relevance of the novel edges being
generated by the model. [7] proposed a metric along these
lines for zero shot visual relationship detection, which was
based on recall. Our proposed metric computes the fraction
of novel edges generated by the model which are present in
the test data. The presence of a relationship in the test data
implies that it is realistic, hence this fraction is a surrogate
measure of how well the model learns about unseen rela-
tionships by leveraging similar relationships which it has
already seen in the training distribution.

ZSEP =

∑
e∈(GE\DE)∩TE

1∑
e∈(GE\DE) 1

(2)

Here, GE , DE and TE refer to the set of directed edges
present in the generated graph G, the training set and the
test set respectively.

7. Additional Qualitative Results
In figures 2, 3 and 4, 5 we show additional results of

graphs expanded by our model (GEMS) on Visual Genome
seed graphs and compare them with baselines GraphRNN*
(GraphRNN with max prev node = 6) and SceneGraph-
Gen [2] respectively.

In figure 6, 7 we show additional results of graphs ex-
panded by our model (GEMS) on Visual Genome seed
graphs and the corresponding 64x64 images generated by
sg2im [4] (with the pretrained model for Visual Genome
dataset) using these expanded scene graphs against base-
lines of GraphRNN* (GraphRNN with max prev node =
6) and SceneGraphGen [2].

Seed Graph GraphRNN* GEMS

Figure 2. Additional comparison of expanded graphs generated by our model (GEMS) v/s baseline GraphRNN* (GraphRNN with
max prev node = 6) on Visual Genome seed graphs.

Seed Graph GraphRNN* GEMS

Figure 3. Additional comparison of expanded graphs generated by our model (GEMS) v/s baseline GraphRNN* (GraphRNN with
max prev node = 6) on Visual Genome seed graphs.

Seed
Graph

SceneGraphGen GEMS

Figure 4. Additional comparison of expanded graphs generated by our model (GEMS) v/s baseline SceneGraphGen on Visual Genome
seed graphs.

Seed
Graph

SceneGraphGen
 GEMS

Figure 5. Additional comparison of expanded graphs generated by our model (GEMS) v/s baseline SceneGraphGen on Visual Genome
seed graphs.

G
raphR

N
N

*
SceneG

raphG
en

G
EM

S
G

raphR
N

N
*

SceneG
raphG

en
G

EM
S

Seed

Graph

Expanded

Graph

Generated

Image

Figure 6. Additional comparison of images generated by sg2im [4] using expanded scene graphs from seed graphs using our method
(GEMS) baselines GraphRNN* and ScenegraphGen.

Seed

Graph

Expanded

Graph

Generated

Image

G
raphR

N
N

*
SceneG

raphG
en

G
EM

S
G

raphR
N

N
*

SceneG
raphG

en
G

EM
S

Figure 7. Additional comparison of images generated by sg2im [4] using expanded scene graphs from seed graphs using our method
(GEMS) baselines GraphRNN* and ScenegraphGen.

References
[1] Ming-Wei Chang, Lev-Arie Ratinov, Dan Roth, and Vivek

Srikumar. Importance of semantic representation: Dataless
classification. In AAAI, volume 2, pages 830–835, 2008.

[2] Sarthak Garg, Helisa Dhamo, Azade Farshad, Sabrina Musa-
tian, Nassir Navab, and Federico Tombari. Unconditional
scene graph generation. In IEEE International Conference
on Computer Vision (ICCV), 2021.

[3] Xu Han, Shulin Cao, Lv Xin, Yankai Lin, Zhiyuan Liu,
Maosong Sun, and Juanzi Li. Openke: An open toolkit for
knowledge embedding. In Proceedings of EMNLP, 2018.

[4] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image genera-
tion from scene graphs. In CVPR, 2018.

[5] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, Michael Bernstein, and
Li Fei-Fei. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. 2016.

[6] Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-
data learning of new tasks. In AAAI, volume 1, page 3, 2008.

[7] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-
Fei. Visual relationship detection with language priors. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, edi-
tors, Computer Vision – ECCV 2016, pages 852–869, Cham,
2016. Springer International Publishing.

[8] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In
EMNLP, volume 14, pages 1532–1543, 2014.

[9] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. Complex embeddings
for simple link prediction. In International conference on
machine learning, pages 2071–2080. PMLR, 2016.

[10] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and
Jure Leskovec. GraphRNN: Generating realistic graphs with
deep auto-regressive models. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 5708–5717. PMLR, 10–
15 Jul 2018.

[11] Alireza Zareian, Svebor Karaman, and Shih-Fu Chang.
Bridging knowledge graphs to generate scene graphs. In
ECCV, 2020.

