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1. Additional Details for zxVAD

Table 1: Augmentation parameters. K denotes kor-
nia.augmentation.

Operation Kornia Parameters

K.ColorJitter 0.1,0.1,0.1,0.1
K.RandomAffine degrees=360
K.RandomPerspective distortion scale=0.2

Additional Implementation Details. We implement zx-
VAD in PyTorch [1]. We resize the input frames to 256×256
and normalize them to the range of [−1,1]. The generator,
the discriminator, and the normalcy classifier are trained with
the learning rates of 0.0002, 0.00002, and 0.00002, respec-
tively with the Adam [2] optimizer (β1 =0.5,β2 =0.999),
following [3]. The generator takes 4 frames as input and
outputs one frame. We drop the last sigmoid layer of N (·)
as suggested in [4]. We extracted the frames of all TI datasets at 30 frames/sec. The batch size is set as 8. The training iterations
for both SHT and UCFC are set as 5000 in all settings of combinations with TI datasets. Unless otherwise specified, we use the
default PyTorch parameters. The average training time is ∼2 hours for VAD datasets and ∼24 hours for the experiments involving TI
datasets on the Nvidia Titan Xp GPUs.

Augmentation Parameters. Our relative attention affirmation loss LRAA requires augmentation of normal frames v using Kornia
[5] to create augmented normal frames g(v). We use kornia.augmentation.AugmentationSequential to apply these
augmentation operations sequentially whose parameters are listed in Tab. 1. kornia.augmentation.ColorJitter has
four parameter values that represent factors of “brightness,” “contrast,” “saturation,” and “hue.” All the operations have probability
parameter p=1.0.

Location and Size Parameters in Pseudo-Anomaly Synthesis Module. Our untrained CNN based Pseudo-anomaly synthesis
module O creates pseudo-anomalies ṽ by pasting cropped object Mx at random location rz with random size rx×ry. We start by
initializing a temporary tensor v with v. The random location rz is a rectangular box with coordinates (b1,b2,b3,b4) [6]. These are
computed as b1=bx−bw/2,b2=bx+bw/2,b3=by−bh/2, and b4=by+bh/2, where (bx,by,bw,bh) are uniformly sampled as follows.
If H and W are height and width of v respectively, then bx∼Unif

(
0,W

)
,by∼Unif

(
0,H

)
,bw=W

√
1−β,bh=H

√
1−β. Here,

b2>b1 and b4>b3. We then resize Mx and M to size (b2−b1)×(b4−b3). Finally, only the pixels corresponding to regions where
M(i,j)=1 are replaced in v to create anomaly frame ṽ. To handle boundary conditions where 0≤bx,bw≤W and 0≤bx,bw≤H,
we clip the values to be in the range of [0,W ] and [0,H], respectively. Here, β∼Unif

(
0,1

)
.

Evaluation criteria. For anomaly scores, we follow [3, 7] and compute Peak Signal to Noise Ratio (PSNR) [8] scores per frame and
normalize PSNR of all frames in each testing video to the range [0, 1] in order to compare with ground-truth binary labels. Note that
we observed such normalization practice (adopted from [3]) impacts anomaly scores.

2. Additional Results on zxVAD

Impact of the amount of TI Data. We analyzed the impact of the amount of TI data on our zxVAD framework in extreme settings.
Particularly, we evaluated zxVAD when the amount of videos of TI datasets (HMDB and UCF101) is close to the number of training
videos available in the VAD datasets. With 0.5%, 1%, 2%, 4%, and 8% of HMDB data, we observed an average cross-domain AUC
performance of 74.99% on Ped1, 93.82% on Ped2, and 79.49% on Ave. A similar observation was made on UCF101 (0.0625%,



0.125%, 0.315%, 0.63%, and 1.25% of data resulted in average cross-domain AUC performance of 74.61% on Ped1, 94.17% on Ped2,
and 79.46% on Ave). This demonstrates that almost SOTA cross-domain performance on the current VAD datasets is achievable even
with an extremely low amount of TI data.

Relevancy among VAD data. We followed [9, 10] for the relevancy analysis between the TI to target domain (Ave, Ped1/2) VAD
data. We observed higher relevancy scores among SHT (to Ave: 0.241, to Ped1/2: 0.250) and UCFC (to Ave: 0.201, to Ped1/2: 0.167)
compared to average TI (to Ave: 0.186, to Ped1/2: 0.138). This confirms: TI data is indeed less relevant to VAD data.

More results on the impact of randomly initialized networks for Pseudo-Anomaly Synthesis. We analyzed the impact of the
randomly initialized network R(·) on our untrained CNN based pseudo-anomaly synthesis module. In Fig. 1, it can be observed that
our zxVAD method outperforms the state-of-the-art (SOTA) xVAD works on the Ped1 and Ped2 datasets in the zero-shot settings
when the source is SHT irrespective of kind of randomly initialized network R(·) employed to extract objects from all our TI datasets.
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Figure 1: Impact of R(·) in zx-
VAD. The source is SHT.

More results on same-dataset testing. We beat our baselines in the same-dataset
testing in all VAD and TI combination scenarios as shown in Tab. 2. We also compare
with more state-of-the-art unsupervised VAD methods under the same-dataset setting in Tab. 3.

Table 2: Same-dataset testing on the SHTdc dataset.We beat our baselines in all the source domain
data settings.

VAD Training data Input to O Method AUC (%) on SHTdc

SHTdc N/A rGAN [11] (paper) 70.11
SHTdc N/A MPN [7] (code) 67.47
SHTdc SHTdc zxVAD (ours) 70.73
SHTdc HMDB zxVAD (ours) 70.85
SHTdc UCF101 zxVAD (ours) 70.80
SHTdc Jester zxVAD (ours) 70.50

Table 3: Additional same dataset
testing comparison. The best and
second best AUC are marked in bold
and underline, respectively.

Methods Ped2 Ave SHT

MPPCA [12] 69.3 - -
MPPC+SFA [12] 61.3 - -

MDT [13] 82.9 - -
ConvAE [14] 85.0 80.0 60.9

TSC [15] 91.0 80.6 67.9
StackRNN [15] 92.2 81.7 68.0
MT-FRCN [16] 92.2 - -
Unmasking [17] 82.2 80.6 -
Frame-Pred [3] 95.4 85.1 72.8

AMC [18] 96.2 86.9 -
MemAE [19] 94.1 83.3 71.2
SDOR [20] 83.2 - -
rGAN [11] 96.2 85.8 77.9
LMN [21] 97.0 88.5 70.5
MPN [7] 96.9 89.5 73.8
zxVAD 96.95 83.8 71.6

Ratios SHTdc

MPN [7] 67.47
(αn,αrn)=(1,0.01) 70.85
(αn,αrn)=(1,0.1) 69.49

(αn,αrn)=(0.1,0.1) 69.95
(αn,αrn)=(0.01,0.01) 70.37

Ablation analysis. zxVAD is not too sensitive to the loss ratios and Table (on right) validates this point.
For our backbone GAN, we use exact same ratios as suggested in [3]. For the proposed normalcy classifier,
we do not use ratios for our losses LAA and LRAA (i.e. set as 1). Finally, the effect of ratios αn on LN and
αrn on LRN is shown. All cases show better AUC than SOTA MPN [7].

3. Examples from Datasets
We provide some video examples of the VAD datasets (SHT, UCFC, Ped1, Ped2, and Ave in Fig.2(a)) and TI datasets (HMDB,
UCF101, and Jester in Fig.2(b)) listed in Tab.2 of the main manuscript.

4. More Qualitative Results
We show additional examples of pseudo-abnormal frames created using our pseudo-anomaly module in Fig. 3 and difference maps
from three different datasets indicating anomalies in Fig. 4.



(a) VAD datasets

(b) TI datasets
Figure 2: Examples from VAD and TI datasets. We visualize some examples of videos used for experiments in our paper.

Figure 3: Pseudo-abnormal frames. We present examples of pseudo-abnormal frames generated using our proposed untrained CNN based
pseudo-anomaly synthesis module.

Figure 4: Difference maps. We show more examples of difference maps obtained from zxVAD (source: SHT). The lighter colors in difference
map mean larger prediction error indicating anomalies. Red boxes indicate ground truth anomalies. Best viewed in color.
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