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1. Additional Information about Scene Prepro-
cessing

As described in the main paper, we use a 3D oriented
bounding box as initialization for position, scale and ori-
entation of the target object, whereas 3D semantic instance
segmentation is used as geometrical information to replace
the target object in the scene with the CAD models. We use
either the 3D bounding box information or the instance seg-
mentation provided by a given dataset, which allows us to
calculate an approximation for the other missing part.

1.1. Extraction of 3D Bounding Box from 3D In-
stance Segmentation

Given the 3D instance segmentation of a target object
in an indoor scene, we want to calculate the 3D oriented
bounding box which fits the object well, as initialization for
position, scale and orientation. We use Trimesh [1] to di-
rectly extract an initial oriented bounding box from the 3D
points of the target object. This initial box is already ori-
ented, however, due to the fact that 3D pointclouds are of-
ten incomplete, it might not be well aligned with the target
object.
Box alignment. We use the domain knowledge that most
furniture is aligned to the scene floor to rectify the initial
box so that the up-axis of the object points in the same di-
rection as the up-axis of the indoor scene. This is done by
calculating the cosine similarity between the basis vectors
of the initial box and the basis vector of the up-axis of the
scene. After finding the basis vector most similar to the up-
axis of the scene, we adjust the corners of the initial bound-
ing box accordingly, so that both up-vectors point in the
same direction.
After adapting the orientation of the box, we need to adapt
the scale. One problem when extracting oriented bounding
boxes from instance segmentation is that boxes are often
too small, as for example legs of chairs and tables are often
missing. To avoid this, we automatically extend all boxes
for specific furniture classes (table, sofa, chair, bed) to the

Figure 1. Example for approximating the 3D oriented bounding
box from the 3D object instance segmentation. Given the instance
segmentation of the orange chair, we use [1] to extract an initial
3D bounding box. Then, we align the up-axis of object and scene
and extend the initial box to the floor if needed.

floor. Figure 1 shows an example how we generate a 3D
oriented bounding box from object instance segmentation.
Note that after calculating the bounding box, we know that
center, scale and up-vector of the box is correct, however,
we do not know if the other basis vectors match the canoni-
cal pose of the ShapeNet CAD models. Therefore, we gen-
erate four box proposals for each target object by rotating
the box around the up-axis by [0◦, 90◦, 180◦, 270◦]. We can
then rely on our CAD retrieval method to select the CAD
model with correct orientation according to our objective
function. Also note that the extracted bounding box does
not have to be very accurate, as we refine the pose of each
CAD model after retrieval.

1.2. Extraction of 3D Instance Segmentation from
3D Bounding Box

We directly assign all 3D points inside a given 3D box to
the instance segmentation mask of this corresponding ob-



Figure 2. Example for approximating the 3D object instance segmentation from the 3D bounding box. Points which are part of only one
bounding box are assigned to the corresponding object. If the bounding boxes of multiple objects overlap, we iteratively assign each point
in the intersection to the corresponding object according to the minimal L1 distance between 3D points of intersection and 3D points of
the objects.

ject. If boxes of multiple objects overlap, we have to assign
the points which are in the intersection of these bounding
boxes to the correct object. This is done by first calculating
which points are located in the intersection of these boxes.
For each point in the intersection pointcloud, we search
the nearest neighbour 3D point in the first and second
object, using the L1 norm. The point in the intersection
box with the lowest distance, either to a point in the first or
second object, will be added to this corresponding object
pointcloud and removed from the intersection pointcloud.
We do this iteratively until all points in the intersection
pointcloud are assigned to the corresponding object. Figure
2 shows an example of our method for approximating the
3D object instance segmentation mask for overlapping
objects.

2. Additional Visualizations of our Fine-grain
Comparison

Figures 3, 4 show additional visualizations from our
fine-grain comparison of results with high deviation to
Scan2CAD. We show the RGB-D scan, the 3D overlay of
the Scan2CAD object (in green) and the 3D overlay of the
CAD model retrieved with our method (in blue), and below,
the 2D reprojections of the CAD models. We leave it to the
reader to assess the quality of these examples.

3. Visualizations of Additional Annotations for
ScanNet

Figures 5, 6 show results for full scene CAD retrieval. In
each row, the RGB-D scan is on the left side, Scan2CAD
annotations are in the middle (in green), and our results are
on the right, whereas red CAD models are objects not an-
notated in Scan2CAD.

4. Additional Visualizations for ARKitScenes
Dataset

Figure 7 shows additional visualizations of results from
our method for the ARKitScenes dataset, which provides no
ground-truth for CAD retrieval.

5. Information about ShapeNet Database for
CAD Model Retrieval

Table 1 provides an overview about which classes from
the Shapenet database are present in ScanNet, Scan2CAD
and ARKitScenes datasets. Additionally, the number of
CAD models used for CAD model retrieval is stated for
each class.
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Figure 3. Additional visualizations from our fine-grain visual comparison. For each example, we show the RGB-D scan, the 3D overlay of
the Scan2CAD object (in green) and the 3D overlay of the CAD model retrieved with our method (in blue), and below, the 2d reprojections
of the CAD models.



Figure 4. Additional visualizations from our fine-grain visual comparison. For each example, we show the RGB-D scan, the 3D overlay of
the Scan2CAD object (in green) and the 3D overlay of the CAD model retrieved with our method (in blue), and below, the 2d reprojections
of the CAD models.



Figure 5. Visualizations showing additional annotations for ScanNet. Left: RGB-D scan. Middle: Scan2CAD annotations. Right: Our
results, where red CAD models are for objects not annotated in Scan2CAD.



Figure 6. Visualizations showing additional annotations for ScanNet. Left: RGB-D scan. Middle: Scan2CAD annotations. Right: Our
results, where red CAD models are for objects not annotated in Scan2CAD.



Figure 7. Results of our method for the ARKitScenes dataset. Left: RGB-D scan. Middle: Our results fused with the RGB-D Scan. Right:
CAD model retrievals only.



Class ScanNet Scan2CAD ARKitScenes # CAD Models
Table 3 3 3 8437
Chair 3 3 3 6779
Sofa 3 3 3 3174

Lamp 3 3 2319
Bench 3 1814

Cabinet 3 3 3 1572
Desk 3 1227

Display 3 3 3 1094
Bathtub 3 3 3 857
Guitar 3 798
Faucet 3 745
Clock 3 652

Flowerpot 3 603
Dresser 3 483
Laptop 3 461

Bookshelf 3 3 3 453
Trash Bin 3 344

File Cabinet 3 299
Piano 3 240
Bed 3 3 3 234

Stove 3 3 219
Bowl 3 187

Washer 3 3 170
Printer 3 167

Microwaves 3 3 153
Basket 3 114
Pillow 3 97

Dishwasher 3 3 94
Bag 3 3 84

Counter 3 71
Keyboard 3 66

Night Stand 3 42
Sink 3 3 32
Toilet 3 3 29

Refrigerator 3 3 18
Table 1. List of classes from the ShapeNet database used for our experiments.


