
Single Stage Weakly Supervised Semantic Segmentation of Complex Scenes
Supplementary Material

Peri Akiva
Rutgers University

peri.akiva@rutgers.edu

Kristin Dana
Rutgers University

kristin.dana@rutgers.edu

1. Ablation Study
In Tab. 1 we investigate the effects of each component in our proposed method and show its impact on overall performance.

It can be seen that thresholding refined features alone is not enough, and that spatially accurate features obtained by the
expanding distance fields are essential in generation of better pseudo-masks and performance. Additionally, point blots are
shown to provide significant utility compared to points, providing additional contextual information not available otherwise.
Note when point blots are not used, points are used instead. If PAC Refiner or Expanding Distance Fields is used, then
pseudo-mask is generated from thresholded output (refined or not) features.

Expanding Distance Fields Point Blot PAC Refiner mIoU (%)

points only 15.2
✓ ✓ 24.7
✓ 49.1

✓ 38.3
✓ ✓ 48.9
✓ ✓ 54.5
✓ ✓ ✓ 60.7

Table 1: Ablation study on Pascal VOC 2012 validation set [9].

2. Annotation Collection
As mentioned in the main paper, we consider the following datasets: Pascal VOC 2012 [9], Cranberry from Aerial Imagery

Dataset (CRAID) [2], CityPersons [22], Inria Aerial Dataset (IAD) [13], ADE20K [24], and CityScapes [6]. Full details about
the datasets is provided in Tab. 2.

Given a fully annotated dataset, we obtain points for objects by selecting the center points of bounding boxes or segmen-
tation mask, and points for backgrounds by uniformly sampling four points per object outside of all boxes in a given scene,
given background is available (not applicable to ADE20K, CityScapes, or similar). CRAID [2], a computational agriculture
dataset, provides 2,835 images with point annotations, and 231 with pixel-wise annotations. CityPersons [22], a pedestrian
detection dataset subset of Cityscapes [6], provides 2115 training and 391 testing image with bounding boxes (processed to
points similar to Pascal VOC). IAD [13], a remote sensing dataset, provides 180 images (cropped to 29239 images) with
pixel-wise annotations (processed to points).

3. Implementation Details
To highlight the contribution of our method, we choose to adopt a standard fully convolutional network (untrained

ResNet50 backbone encoder) that is trained from scratch. Note that this is not typical of other baseline methods, in which

Random Affine Transformation

Random Walk

new seeds

KL-Divergence
Distance

Intersection
over Union

blob-wise
comparison

Random Walk

update

initial
mask

repeat for t
iterations

Figure 1: Point Blot Generator pipeline. The module generates initial point blots using input image, X , and ground truth
points, Yp. Initial point blots are then iteratively updated conditioned to coverage matching and underlying color distribution
similarity of current and candidate blobs. Candidate blobs are generated through perturbations of initial points followed by
random walks in color space, which are separated into candidate blobs using the connected component (CC) algorithm [8].

Dataset Annotations Complexity # training images # validation images Domain

Pascal VOC 2012 [9] F Diversity ∼ Count ↓ Scale ↑ 10,582 1,449 Benchmark
ADE20K [24] F Diversity ↑ Count ↑ Scale ↓ 20,210 2,000 Complex indoor and outdoors
CityScapes [6] F Diversity ∼ Count ↑ Scale ↓ 22,977 500 Autonomous vehicles
CRAID [2] P Diversity ↓ Count ↑ Scale ↓ 2,835 231 Precision agriculture
IAD [13] F Diversity ↓ Count ↑ Scale ∼ 27,777 1,462 Remote sensing
CityPersons [22] F Diversity ↓ Count ∼ Scale ↓ 2115 391 Pedestrian detection

Table 2: Datasets explored in this work with corresponding complexity parameters, dataset details, and domain. ∼ ↓, and ↑
correspond to average, lower end of the parameter range, and upper end of the parameter range.

pre-trained, complex networks (often pre-trained on the benchmark or similar dataset) are used to achieve SOTA perfor-
mance. Our network is trained using the SGD optimizer, with starting learning rate of 1e-5 and cosine annealing scheduler
[12]. We use weight standardization [20] and group normalization layers [16] with group size of 32. Training data is aug-
mented with normalization transformation, color jittering, and random vertical and horizontal flips. We use Cross Entropy
loss for training, with “0” labels ignored (background points, labeled as C + 1, are considered instead). For the PAC Refine-
ment Network, we use 10 layers with kernel sizes (5, 5, 3, 3, 3, 3, 3, 3, 3, 3), dilations (1, 1, 2, 2, 4, 4, 8, 8, 16, 24), and strides
(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1). We use −0.025, 0.025 for lower and upper limits for the Expanding Distance Fields, and 0.75
for pseudo-mask thresholding. The Point Blot generation has two sets of parameters, depending on the system pipeline. For
run-time generation, we use k = 2, λ = 0.5, ϕ = 0.2, with random walk parameters beta = 90, tol = 0.01, and prob = 0.9.
Those parameters ensure faster execution of the Point Blotter, with faster random walk convergence and small number of
iterations. This can also be done as a deterministic data pre-processing step (which is different than pre-training steps), in
which case more constraining parameters can be used at the cost of longer processing time. In our implementation, we use
beta = 200, tol = 0.0001, and prob = 0.85 at a significant time cost increase (For performance evaluation, we report
mean Intersection over Union (mIoU) for both validation and test sets. Note that all experiments reported in the main paper
are done in a single stage, without pruning or eliminating output predictions. Baseline method for real world datasets was
trained in accordance with the method’s reported procedure. Further implementation details and pseudo-code is available in

the following sub-sections. Full code will be released upon publication.

3.1. Pixel Adaptive Convolution Refinement Network

1
2 class PACRN(nn.Module):
3
4 def __init__(self, num_iter=10, dilations=[1]):
5 super(PACRN, self).__init__()
6
7 self.num_iter = num_iter
8 self.pac_x = PACL2(dilations)
9 self.pac_m = LaplacianBaseKernel(dilations)

10 self.pac_std = PACStd(dilations)
11 self.pac_mean = PACMean(dilations)
12
13 def forward(self, x, mask):
14 # x: [B,3,H,W]
15 # mask: [B,C,H,W]
16 B,K,H,W = x.size()
17
18 x_std = self.pac_std(x)
19 mask_mean = self.pac_mean(x)
20
21 x = -(self.pac_x(x) * mask_mean) / (1e-8 + 1.0 * x_std)
22
23 x = x.mean(1, keepdim=True)
24 x = F.softmax(x, 2)
25
26 for _ in range(self.num_iter):
27 m = self.pac_m(mask)
28 mask = (m * x)
29 mask = mask.sum(2)
30
31 return mask

Listing 1: Pixel Adaptive Convolution Refinement Network Simplified Pseudo-Code

3.2. Point Blot Generator

1
2
3 class PointBlotter(object):
4 def combine_masks(self, image, current_pmask,
5 labels_from_image, padding: int =10):
6 """Combine current and proposal masks based on IoU and KL Div. Distance thresholds
7
8 Args:
9 image: input image

10 current_pmask: current mask
11 labels_from_image: proposal mask from perturbed points
12 padding (int, optional): padding around blobs. Defaults to 10.
13
14 Returns:
15 np.array: mask which is either current or combined
16 """
17 mask = current_pmask.copy()
18 height, width = current_pmask.shape[0], current_pmask.shape[1]
19 blobs_from_perturbed_image, nblobs_image = ndimage.label(labels_from_image)
20 blobs_from_pmask, nblobs_pmask = ndimage.label(current_pmask)
21
22 for label in range(1, nblobs_pmask+1):
23
24 comparable_region_label_image = collect_pixels()
25 comparable_region_label_pmask = collect_pixels()
26
27 comparable_region_rgb_image = collect_pixels()
28 comparable_region_rgb_pmask = collect_pixels()
29
30 # blob IoU calculations
31 iou_tmp = IoU(comparable_region_label_image,
32 comparable_region_label_pmask,
33 num_classes=self.num_classes)
34
35 # KL Divergence Distance
36 kl_dist = entropy(comparable_region_rgb_image, comparable_region_rgb_pmask)
37
38 if iou_tmp > self.iou_thresh and kl_dist < self.kl_dist_thresh:
39 tmp_mask = np.add(comparable_region_label_image, comparable_region_label_pmask)
40 tmp_mask[tmp_mask != 0] = real_label
41 mask[overlap_locations] = tmp_mask
42
43 return mask
44
45 def generate(self, image, points_mask):
46 """Given points, perturb and combine proposal regions
47
48 Args:
49 image: input image
50 points_mask: initial point annotations
51 """
52
53 ### Generate initial mask under strict constraints
54 mask = random_walker(image, points_mask,
55 beta=self.beta, mode=self.mode,
56 multichannel=True, tol=self.tol,
57 return_full_prob=self.return_full_prob)
58
59 # remove background regions

60 if self.consider_background:
61 mask[mask == mask.max()] = 0
62
63 ### Iterate over number of perturbations
64 for index in range(self.num_of_perturbations):
65
66 # define increasing ranges of perturbations
67 base_translation = 2*index
68 base_angle = 2*index
69 random_translation_x = random.randint(-base_translation, base_translation)
70 random_translation_y = random.randint(-base_translation, base_translation)
71 random_angle = random.randint(-base_angle, base_angle)
72
73 # apply affine transformation of points
74 perturbed_points_mask = affine_transformation(points_mask, angle=random_angle,
75 translate=(random_translation_x, random_translation_y),
76 scale=1.0, shear=0, fillcolor=0)
77
78 # generate a mask proposal using a random walk
79 mask_proposal = random_walker(image, perturbed_points_mask, beta=self.beta, mode=’cg_mg’,
80 multichannel=True, tol=self.tol, return_full_prob=False)
81
82 # remove background proposals
83 mask_proposal[mask_proposal == mask_proposal.max()] = 0
84
85 # check if proposal mask should be added to the current mask
86 mask = self.combine_masks(image=image, current_pmask=mask,
87 labels_from_image=mask_proposal)
88
89 if self.consider_background:
90 mask[background_points_inds[:, 0], background_points_inds[:, 1]] = self.num_classes-1
91
92 return mask

Listing 2: Point Blot Generator Simplified Pseudo-Code

3.3. Expanding Distance Field

1
2
3 class ExpandingDistanceMapper(object):
4 """Given set of points, generate distance fields"""
5
6 def get_distance_map(self, points_mask, image, labels_logits,
7 dm_confidence, bg_dm_confidence):
8 """generate expanding distance map for batch images
9

10 Args:
11 points_mask: points mask [b,c,h,w]
12 image: input image [b,3,h,w]
13 labels_logits: logits one hot encoding of labels
14 dm_confidence (float, optional): distance map confidence score for objects with confidence. Defaults to 0.
15 bg_dm_confidence (float, optional): distance map confidence score for background. Defaults to 0.
16
17 Returns:
18 distance maps of batch for each class with shape [b,c,h,w]
19 """
20
21 batch_size, height, width = mask.shape
22 distance_maps = torch.zeros((batch_size, self.num_classes, height, width))
23 for b in range(batch_size):
24 mask_b = points_mask[b,:,:]
25 labels_logits_b = labels_logits[b,:]
26 classes_in_mask_b = torch.where(labels_logits_b==1)[0]
27
28 # If background class exists, use those points
29 # If background class does not exists, we use all other points as background
30 if self.background_class_label:
31 background_points = (mask_b==self.background_class_label).nonzero()
32 neg_distance_map = distanceTransform(background_points)
33 neg_distance_map = utils.normalize_dm(neg_distance_map,
34 confidence_score=bg_dm_confidence)
35 neg_distance_map[neg_distance_map>1] = 1
36 neg_distance_map[neg_distance_map<0] = 0
37
38 for label in classes_in_mask_b:
39 Y_1 = torch.zeros((height, width))
40 label_points = (mask_b==label).nonzero()
41
42 if label_points.shape[0]==0:
43 # This covers the case in which a random crop is applied,
44 # and a class is now not visible in the crop.
45 pos_distance_map = np.ones((height, width))/3
46 else:
47
48
49 # Generate distance map for points
50 pos_distance_map = distanceTransform(label_points,)
51
52 pos_distance_map = utils.normalize_dm(pos_distance_map,
53 confidence_score=dm_confidence)
54
55 pos_distance_map[pos_distance_map>1] = 1
56 pos_distance_map[pos_distance_map<0] = 0
57
58 if self.background_class_label:
59 combined = neg_distance_map*pos_distance_map
60 else:
61 background_condition = ((mask_b!=label) & (mask_b != 0))
62 background_points = (background_condition).nonzero()
63 neg_distance_map = distanceTransform(background_points,)
64 neg_distance_map = utils.normalize_dm(neg_distance_map,

65 confidence_score=bg_dm_confidence)
66 neg_distance_map[neg_distance_map>1] = 1
67 neg_distance_map[neg_distance_map<0] = 0
68 combined = neg_distance_map*pos_distance_map
69
70 distance_maps[b, label, :, :] = torch.from_numpy(combined)
71
72 return distance_maps

Listing 3: Expanding Distance Field Simplified Pseudo-Code

4. Additional Qualitative and Quantitative Results
This supplementary material provides class-wise mIoU for validation (Table 3) and test (Table 5) sets. It also presents

additional qualitative results for Pascal VOC 2012 validation set (Figure 2), epoch-by-epoch pseudo-mask progression (Figure
5), and additional qualitative results for CRAID [2], IAD [13], and CityPersons [22] datasets (Figure 3).

Input Image Ground Truth Ours Input Image Ground Truth Ours
Figure 2: Additional qualitative results of our method on Pascal VOC 2012 [9]. Best viewed in color and zoomed. Dark gray
pixels represent background class.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mIoU

Multi Stage

FickleNet [11] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9
AffinityNet [1] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.5 68.1 51.6 61.7
SSDD [18] 89.0 62.5 28.9 83.7 52.9 59.5 77.6 73.7 87.0 34.0 83.7 47.6 84.1 77.0 73.9 69.6 29.8 84.0 43.2 68.0 53.4 64.9
SEAM [19] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5

Single Stage

MIL+LSE [15] 79.6 50.2 21.6 40.9 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0
CRF-RNN [17] 85.8 65.2 29.4 63.8 31.2 37.2 69.6 64.3 76.2 21.4 56.3 29.8 68.2 60.6 66.2 55.8 30.8 66.1 34.9 48.8 47.1 52.8
Araslanov et al. [3] 87.0 63.4 33.1 64.5 47.4 63.2 70.2 59.2 76.9 27.3 67.1 29.8 77.0 67.2 64.0 72.4 46.5 67.6 38.1 68.2 63.6 59.7
Ours 88.1 69.6 22.0 57.8 55.6 59.4 59.4 59.6 78.1 30.9 76.7 59.2 73.8 69.7 51.6 59.2 47.1 75.8 54.7 69.8 56.8 60.7

Single Stage + CRF

Araslanov et al. + CRF [3] 88.7 70.4 35.1 75.7 51.9 65.8 71.9 64.2 81.1 30.8 73.3 28.1 81.6 69.1 62.6 74.8 48.6 71.0 40.1 68.5 64.3 62.7
Ours + CRF 88.9 69.8 24.0 66.4 58.2 62.4 61.1 64.1 78.6 31.3 78.0 59.3 74.3 71.2 55.3 61.6 51.1 76.1 57.8 71.0 59.6 62.9

Table 3: Class-wise Mean Intersection over Union (%) accuracy (higher is better) on Pascal VOC 2012 validation set [9].

Image GT Araslanov et
al. [3]

Ours Image GT Araslanov et
al. [3]

Ours

Figure 3: Additional qualitative results of our method on CRAID [2] (top left), IAD [13] (top right), and CityPersons [22]
(bottom). It can be seen that our method provides superior results for all real-world datasets. Best viewed in color and
zoomed. Dark gray pixels represent background class.

Input Image Ground Truth Ours Input Image Ground Truth Ours

Figure 4: Additional qualitative results of our method on ADE20K [24] (left), and CityScapes [6] (right). Best viewed in
color and zoomed. Dark gray pixels represent background class.

Dataset Pascal VOC 2012 [9]

Method Sup. # of stages val test

Single Stage, Full Supervision

WideResNet38 [21] F 1 80.8 82.5
DeepLab v3 [5] F 1 - 87.8

Multi Stage

Bearman et al. [4] S,P 3 46.0 43.6
BoxSup [7] S,B 3 62.0 64.6
AffinityNet [1] I 4 61.7 63.7
SEAM [19] I 4 64.5 65.7
SMPL [10] I 9 69.5 71.6
SMPL [10] B 5 73.5 74.7

Single Stage

EM [14] I 1 38.2 39.6
MIL-LSE [15] I 1 42.0 40.6
CRF-RNN [23] I 1 52.8 53.7
Araslanov et al. [3] I 1 59.7 60.5
Ours P 1 60.7 60.8

Table 4: mIoU (%) accuracy (higher is better) on Pascal VOC 2012 validation and test sets [9]. F , I, B, S, and P represent
full, image, box, saliency, and point level annotations respectively. Our method achieves SOTA performance compared
to our single-stage weakly supervised baselines, even with from-scratch training. Class-wise performance is available in
supplementary material.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mIoU

Multi Stage

FickleNet [11] 89.8 78.3 34.1 73.4 41.2 67.2 81.0 77.3 81.2 29.1 72.4 47.2 76.8 76.5 76.1 72.9 56.5 82.9 43.6 48.7 64.7 65.3
AffinityNet [1] 89.1 70.6 31.6 77.2 42.2 68.9 79.1 66.5 74.9 29.6 68.7 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 63.9 51.1 63.7
SSDD [18] 89.5 71.8 31.4 79.3 47.3 64.2 79.9 74.6 84.9 30.8 73.5 58.2 82.7 73.4 76.4 69.9 37.4 80.5 54.5 65.7 50.3 65.5

Single Stage

MIL+LSE [15] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6
Araslanov et al. [3] 87.4 63.6 34.7 59.9 40.1 63.3 70.2 56.5 71.4 29.0 71.0 38.3 76.7 73.2 70.5 71.6 55.0 66.3 47.0 63.5 60.3 60.5
Ours 88.5 70.0 22.7 57.2 51.3 58.6 58.9 57.3 77.2 30.9 77.5 60.2 73.6 70.6 54.9 58.8 52.4 76.6 56.2 67.9 55.3 60.8

Single Stage + CRF

Araslanov et al. + CRF [3] 89.2 73.4 37.3 68.3 45.8 68.0 72.7 64.1 74.1 32.9 74.9 39.2 81.3 74.6 72.6 75.4 58.1 71.0 48.7 67.7 60.1 64.3
Ours + CRF 89.1 72.2 25.1 62.9 56.2 61.7 60.8 61.5 79.5 33.3 78.8 59.8 76.8 74.5 59.1 62.8 58.2 77.0 58.9 70.9 59.8 63.8

Table 5: Class-wise Mean Intersection over Union (%) accuracy (higher is better) on Pascal VOC 2012 test set [9].

Figure 5: From top to bottom rows: Expanding Distance Fields, refined features, filtered refined features, and final pseudo-
mask. Epoch-by-epoch progressions of generated pseudo-mask with corresponding expanding distance field. It can be seen
that in early epochs, when features are not well defined, the expanding distance fields prevents inclusion of “bad” features
in the intermediate pseudo-mask. As features improve, the expanding distance field allows more features in the final output.
The initial pink pseudo-mask is the point blot. Light blue pixels represent background class.

References
[1] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic

segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4981–4990, 2018.
[2] Peri Akiva, Kristin Dana, Peter Oudemans, and Michael Mars. Finding berries: Segmentation and counting of cranberries using point

supervision and shape priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
pages 50–51, 2020.

[3] Nikita Araslanov and Stefan Roth. Single-stage semantic segmentation from image labels. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 4253–4262, 2020.

[4] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li Fei-Fei. What’s the point: Semantic segmentation with point supervision.
In European conference on computer vision, pages 549–565. Springer, 2016.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2017.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,
and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[7] Jifeng Dai, Kaiming He, and Jian Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic
segmentation. In Proceedings of the IEEE International Conference on Computer Vision, pages 1635–1643, 2015.

[8] Michael B Dillencourt, Hanan Samet, and Markku Tamminen. A general approach to connected-component labeling for arbitrary
image representations. Journal of the ACM (JACM), 39(2):253–280, 1992.

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge.
International Journal of Computer Vision, 88(2):303–338, June 2010.

[10] Tsung-Wei Ke, Jyh-Jing Hwang, and Stella X Yu. Universal weakly supervised segmentation by pixel-to-segment contrastive learn-
ing. arXiv preprint arXiv:2105.00957, 2021.

[11] Jungbeom Lee, Eunji Kim, Sungmin Lee, Jangho Lee, and Sungroh Yoon. Ficklenet: Weakly and semi-supervised semantic image
segmentation using stochastic inference. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5267–5276, 2019.

[12] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983, 2016.
[13] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, and Pierre Alliez. Can semantic labeling methods generalize to any

city? the inria aerial image labeling benchmark. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
pages 3226–3229. IEEE, 2017.

[14] George Papandreou, Liang-Chieh Chen, Kevin P Murphy, and Alan L Yuille. Weakly-and semi-supervised learning of a deep
convolutional network for semantic image segmentation. In Proceedings of the IEEE international conference on computer vision,
pages 1742–1750, 2015.

[15] Pedro O Pinheiro and Ronan Collobert. From image-level to pixel-level labeling with convolutional networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1713–1721, 2015.

[16] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Weight standardization. arXiv preprint arXiv:1903.10520, 2019.
[17] Anirban Roy and Sinisa Todorovic. Combining bottom-up, top-down, and smoothness cues for weakly supervised image segmenta-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3529–3538, 2017.
[18] Wataru Shimoda and Keiji Yanai. Self-supervised difference detection for weakly-supervised semantic segmentation. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages 5208–5217, 2019.
[19] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and Xilin Chen. Self-supervised equivariant attention mechanism for weakly

supervised semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12275–12284, 2020.

[20] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on computer vision (ECCV), pages
3–19, 2018.

[21] Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern
Recognition, 90:119–133, 2019.

[22] Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele. Citypersons: A diverse dataset for pedestrian detection. In CVPR, 2017.
[23] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, and Philip

H. S. Torr. Conditional random fields as recurrent neural networks. In International Conference on Computer Vision (ICCV), 2015.
[24] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing through ade20k dataset. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

