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1. Ablation Study

In Tab. [[jwe investigate the effects of each component in our proposed method and show its impact on overall performance.
It can be seen that thresholding refined features alone is not enough, and that spatially accurate features obtained by the
expanding distance fields are essential in generation of better pseudo-masks and performance. Additionally, point blots are
shown to provide significant utility compared to points, providing additional contextual information not available otherwise.
Note when point blots are not used, points are used instead. If PAC Refiner or Expanding Distance Fields is used, then
pseudo-mask is generated from thresholded output (refined or not) features.

Expanding Distance Fields Point Blot PAC Refiner mloU (%)

points only 15.2
v 24.7
49.1
38.3
48.9
v 54.5
v 60.7
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Table 1: Ablation study on Pascal VOC 2012 validation set [9]].

2. Annotation Collection

As mentioned in the main paper, we consider the following datasets: Pascal VOC 2012 [9], Cranberry from Aerial Imagery
Dataset (CRAID) [2], CityPersons [22]], Inria Aerial Dataset (IAD) [13]], ADE20K [24]], and CityScapes [[6]. Full details about
the datasets is provided in Tab. [2}

Given a fully annotated dataset, we obtain points for objects by selecting the center points of bounding boxes or segmen-
tation mask, and points for backgrounds by uniformly sampling four points per object outside of all boxes in a given scene,
given background is available (not applicable to ADE20K, CityScapes, or similar). CRAID [2f], a computational agriculture
dataset, provides 2,835 images with point annotations, and 231 with pixel-wise annotations. CityPersons [22], a pedestrian
detection dataset subset of Cityscapes [6], provides 2115 training and 391 testing image with bounding boxes (processed to
points similar to Pascal VOC). IAD [13], a remote sensing dataset, provides 180 images (cropped to 29239 images) with
pixel-wise annotations (processed to points).

3. Implementation Details

To highlight the contribution of our method, we choose to adopt a standard fully convolutional network (untrained
ResNet50 backbone encoder) that is trained from scratch. Note that this is not typical of other baseline methods, in which
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Figure 1: Point Blot Generator pipeline. The module generates initial point blots using input image, X, and ground truth
points, Y}, Initial point blots are then iteratively updated conditioned to coverage matching and underlying color distribution
similarity of current and candidate blobs. Candidate blobs are generated through perturbations of initial points followed by
random walks in color space, which are separated into candidate blobs using the connected component (CC) algorithm [8]].

Dataset Annotations ~ Complexity # training images  # validation images ~ Domain

Pascal VOC 2012 [9] F Diversity ~ Count | Scale 1 10,582 1,449 Benchmark

ADE20K [24] F Diversity T Count 1 Scale | 20,210 2,000 Complex indoor and outdoors
CityScapes [6] F Diversity ~ Count 1 Scale |, 22,977 500 Autonomous vehicles
CRAID [2] P Diversity | Count 1 Scale | 2,835 231 Precision agriculture

TIAD [13] F Diversity | Count T Scale ~ 27,777 1,462 Remote sensing

CityPersons [22] F Diversity | Count ~ Scale |, 2115 391 Pedestrian detection

Table 2: Datasets explored in this work with corresponding complexity parameters, dataset details, and domain. ~ |, and 1
correspond to average, lower end of the parameter range, and upper end of the parameter range.

pre-trained, complex networks (often pre-trained on the benchmark or similar dataset) are used to achieve SOTA perfor-
mance. Our network is trained using the SGD optimizer, with starting learning rate of le-5 and cosine annealing scheduler
[12]]. We use weight standardization [20] and group normalization layers [[16] with group size of 32. Training data is aug-
mented with normalization transformation, color jittering, and random vertical and horizontal flips. We use Cross Entropy
loss for training, with “0” labels ignored (background points, labeled as C + 1, are considered instead). For the PAC Refine-
ment Network, we use 10 layers with kernel sizes (5,5, 3, 3, 3, 3,3, 3, 3, 3), dilations (1,1, 2,2,4,4,8,8,16,24), and strides
(2,2,2,2,1,1,1,1,1,1,1,1). We use —0.025, 0.025 for lower and upper limits for the Expanding Distance Fields, and 0.75
for pseudo-mask thresholding. The Point Blot generation has two sets of parameters, depending on the system pipeline. For
run-time generation, we use k = 2, A = 0.5, ¢ = 0.2, with random walk parameters beta = 90, tol = 0.01, and prob = 0.9.
Those parameters ensure faster execution of the Point Blotter, with faster random walk convergence and small number of
iterations. This can also be done as a deterministic data pre-processing step (which is different than pre-training steps), in
which case more constraining parameters can be used at the cost of longer processing time. In our implementation, we use
beta = 200, tol = 0.0001, and prob = 0.85 at a significant time cost increase ( For performance evaluation, we report
mean Intersection over Union (mloU) for both validation and test sets. Note that all experiments reported in the main paper
are done in a single stage, without pruning or eliminating output predictions. Baseline method for real world datasets was
trained in accordance with the method’s reported procedure. Further implementation details and pseudo-code is available in



the following sub-sections. Full code will be released upon publication.

3.1. Pixel Adaptive Convolution Refinement Network

class PACRN (nn.Module) :

def __init_ (self, num_iter=10, dilations=[1]):
5 super (PACRN, self)._init_ ()

self.num_iter = num_iter
8 self.pac_x = PACL2(dilations)

9 self.pac_m = LaplacianBaseKernel (dilations)
10 self.pac_std = PACStd(dilations)

11 self.pac_mean = PACMean (dilations)

13 def forward(self, x, mask):

14 # x: [B,3,H,W]

15 # k: [B,C,H,W

16 B,K,H,W = x.size()

17

18 x_std = self.pac_std(x)

19 mask_mean = self.pac_mean (x)
20

21 x = —(self.pac_x(x) * mask_mean) / (le-8 + 1.0 x x_std)
2

23 x = x.mean (1, keepdim=True)

x = F.softmax(x, 2)

26 for _ in range(self.num_iter):
m = self.pac_m(mask)
mask = (m * x)

mask = mask.sum(2)

31 return mask

Listing 1: Pixel Adaptive Convolution Refinement Network Simplified Pseudo-Code

3.2. Point Blot Generator

3 class PointBlotter (object) :
4 def combine_masks (self, image, current_pmask,
5 labels_from_image, padding: int =10):

6 """Combine current and p. sal masks based on IoU and KL Div. Distance thresholds
8 8

9 image:

10 current_] current mask

11 labels_from proposal mask from perturbed points

12 padding (int, optional): padding around blobs. Defaults to 10.

13

14 Returns:

15 np.array: mask which r current or combined

16 o

17 mask = current_pmask.copy ()

18 height, width = current_pmask.shape[0], current_pmask.shape[1]

19 blobs_from perturbed_image, nblobs_image = ndimage.label (labels_from image)
20 blobs_from_pmask, nblobs_pmask = ndimage.label (current_pmask)

21

22 for label in range(l, nblobs_pmask+1):

comparable_region_label_image = collect_pixels ()
comparable_region_label_pmask = collect_pixels ()

comparable_region_rgb_image = collect_pixels()
comparable_region_rgb_pmask = collect_pixels()

# blob IoU calcula
iou_tmp = IoU(comparable_region_label_image,
comparable_region_label_pmask,
num_classes=self.num_classes)

ions

L3 rgence Distance

kl_dist = entropy (comparable_region_rgb_image, comparable_region_rgb_pmask)
38 if iou_tmp > self.iou_thresh and kl_dist < self.kl_dist_thresh:
39 tmp_mask = np.add (comparable_region_label_image, comparable_region_label_pmask)
40 tmp_mask [tmp_mask != 0] = real_label

4 mask [overlap_locations] = tmp_mask

43 return mask

44

45 def generate (self, image, points_mask) :

46 """Given points, perturb and combine propo regions
47

48

points_ma ial point annotations

al mask under stric

### Generate init
mask = random_walker (image, points_mask,
beta=self.beta, mode=self.mode,
multichannel=True, tol=self.tol,
return_full_prob=self.return_full_prob)

kground ons




60 if self.consider_background:

61 mask [mask == mask.max()] = 0

62

63 ### Iterate over number of perturbations

64 for index in range(self.num _of_perturbations) :

65

66 # define increasing ranges of perturbations

67 base_translation = 2+index

68 base_angle = 2index

69 random_translation_x = random.randint (-base_translation, base_translation)

70 random_translation_y = random.randint (-base_translation, base_translation)

71 random_angle = random.randint (-base_angle, base_angle)

72

73 # apply affine transformation of points

74 perturbed_points_mask = affine_transformation(points_mask, angle=random_angle,

75 translate=(random_translation_x, random_translation_y),
76 scale=1.0, shear=0, fillcolor=0)

77

78 # generate a mask proposal using a random walk

79 mask_proposal = random_walker (image, perturbed_points_mask, beta=self.beta, mode='cg_mg’,
80 multichannel=True, tol=self.tol, return_full prob=False)
81

82 # remove background proposals

83 mask_proposal [mask_proposal == mask_proposal.max()] = 0

84

85 # check if proposal mask should be added to the current mask

86 mask = self.combine_masks (image=image, current_pmask=mask,

87 labels_from_image=mask_proposal)

88

89 if self.consider_background:

90 mask [background_points_inds[:, 0], background_points_inds[:, 1]] = self.num classes-1
91

92 return mask

Listing 2: Point Blot Generator Simplified Pseudo-Code

3.3. Expanding Distance Field

§

3 class ExpandingDistanceMapper (object) :

4 """Given s of points, generate distance fields"""

5

6 def get_distance_map(self, points_mask, image, labels_logits,

7 dm_confidence, bg_dm_confidence) :

8 "nngenerate expanding distance map for batch images

9

10 Args:

11 points_mask: poin [b, c,h,w]

12 image: input image [b,3,h,w]

13 labels_logi logits one hot encoding of labels

14 dm_confidence (float, optional): distance map confidence score for objects with confidence. Defaults to 0.

15 bg_dm_confidence (float, optional): distance map confidence score for background. Defaults to 0.

16

17 Returns:

18 distance maps of batch for each class with shape [b,c,h,w]

19 e

20

21 batch_size, height, width = mask.shape

22 distance_maps = torch.zeros((batch_size, self.num_classes, height, width))

23 for b in range (batch_size) :

24 mask_b = points_mask[b,:,:]

25 labels_logits_b = labels_logits(b, :]

26 classes_in_mask_b = torch.where(labels_logits_b==1) [0]

27

28 # If background class exists, use those points

29 # If background class does not exists, we use all other points as background

30 if self.background_class_label:

31 background_points = (mask_b==self.background_class_label) .nonzero ()

32 neg_distance_map = distanceTransform(background_points)

33 neg_distance_map = utils.normalize_dm(neg_distance_map,

34 confidence_score=bg_dm_confidence)
neg_distance_map[neg_distance_map>1] = 1
neg_distance_map[neg_distance_map<0] = 0

for label in classes_in_mask_b:
Y_1 = torch.zeros ((height, width))
label_points = (mask_b==label) .nonzero ()

if label_points.shape[0]=
# This covers the case in which a random crop is applied,
# and a class is now not visible in the crop.
pos_distance_map = np.ones ((height, width))/3

else:

# Generate distance map for points
pos_distance_map = distanceTransform(label_points,)

pos_distance_map = utils.normalize_dm(pos_distance_map,
confidence_score=dm_confidence)

5 pos_distance_map [pos_distance_map>1] = 1
56 pos_distance_map [pos_distance_map<0] = 0
57
58 if self.background class_label:
59 combined = neg_distance_map+pos_distance_map
60 else:
61 background_condition = ((mask_b!=label) & (mask_b != 0))
62 background_points = (background_condition) .nonzero ()
63 neg_distance_map = distanceTransform(background _points,)

64 neg_distance_map = utils.normalize_dm(neg_distance_map,



confidence_score=bg_dm_confidence)
neg_distance_map[neg_distance_map>1] = 1
neg_distance_map[neg_distance_map<0] = 0
combined = neg_distance_map+pos_distance_map

distance_maps[b, label, :, :] = torch.from_ numpy (combined)

return distance_maps

Listing 3: Expanding Distance Field Simplified Pseudo-Code

4. Additional Qualitative and Quantitative Results

This supplementary material provides class-wise mloU for validation (Table [3) and test (Table [3)) sets. It also presents
additional qualitative results for Pascal VOC 2012 validation set (Figure[2)), epoch-by-epoch pseudo-mask progression (Figure
), and additional qualitative results for CRAID [2]], IAD [13], and CityPersons [22] datasets (Figure[3).

r
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Figure 2: Additional qualitative results of our method on Pascal VOC 2012 [9]. Best viewed in color and zoomed. Dark gray
pixels represent background class.



Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv  mloU

Multi Stage

FickleNet [11] 895 76.6 326 746 515 711 834 744 836 241 734 474 782 740 688 732 478 799 370 573 646 649
AffinityNet [1] 882 682 306 8I.1 496 61.0 778 66.1 751 290 660 402 804 620 704 737 425 707 425 68.1 51.6 61.7
SSDD 89.0 625 289 837 529 595 776 737 870 340 837 476 841 770 739 696 298 840 432 68.0 534 649
SEAM 88.8 685 333 857 404 673 789 763 819 29.1 755 481 799 738 714 752 489 798 409 582 530 645
Single Stage

MIL+LSE 79.6 502 21.6 409 349 405 459 515 606 126 512 11.6 568 529 4438 427 312 554 215 388 369 420
CRF-RNN [17] 858 652 294 638 312 372 696 643 762 214 563 29.8 682 606 662 558 30.8 66.1 349 488 471 528
Araslanov et al. [3] 87.0 634 33.1 645 474 632 702 592 769 273 67.1 298 770 672 640 724 465 676 381 682 63.6 59.7
Ours 88.1 69.6 220 578 556 594 594 596 781 309 767 592 738 697 51.6 592 47.1 758 547 698 568 60.7

Single Stage + CRF

Araslanov eral. + CRF [3] 887 704 351 757 519 658 719 642 811 308 733 281 816 69.1 626 748 486 710 40.1 685 643 627
Ours + CRF 889 698 240 664 582 624 611 641 786 313 780 593 743 712 553 616 511 761 578 710 596 629

Table 3: Class-wise Mean Intersection over Union (%) accuracy (higher is better) on Pascal VOC 2012 validation set [9]].

Araslanov et Araslanov et

al. 3] al. [3]

Figure 3: Additional qualitative results of our method on CRAID [2]] (top left), IAD (top right), and CityPersons
(bottom). It can be seen that our method provides superior results for all real-world datasets. Best viewed in color and
zoomed. Dark gray pixels represent background class.
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Figure 4: Additional qualitative results of our method on ADE20K [24]] (left), and CityScapes [6] (right). Best viewed in
color and zoomed. Dark gray pixels represent background class.



Dataset Pascal VOC 2012 [9]
Method Sup.  # of stages val test

Single Stage, Full Supervision
WideResNet38 [121] F 1 80.8 825

DeepLab v3 [5] F 1 87.8
Multi Stage

Bearman et al. [4] S, P 3 46.0 43.6
BoxSup [7] S, B 3 620 64.6
AffinityNet [1] T 4 61.7 63.7
SEAM [19] T 4 645 65.7
SMPL [10] 7 9 69.5 71.6
SMPL [10] B 5 735 747
Single Stage

EM [14] T 1 382 39.6
MIL-LSE [15] T 1 42.0 40.6
CRF-RNN ([23] T 1 52.8 537
Araslanov et al. [3] 7 1 59.7  60.5
Ours P 1 60.7 60.8

Table 4: mIoU (%) accuracy (higher is better) on Pascal VOC 2012 validation and test sets [9]. F, Z, B3, S, and P represent
full, image, box, saliency, and point level annotations respectively. Our method achieves SOTA performance compared
to our single-stage weakly supervised baselines, even with from-scratch training. Class-wise performance is available in
supplementary material.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv  mloU
Multi Stage

FickleNet [ 11! 89.8 783 341 734 412 672 810 773 812 29.1 724 472 768 765 761 729 565 829 436 487 647 653
AffinityNet [1] 89.1 70.6 31.6 772 422 689 79.1 665 749 296 687 56.1 821 648 786 735 50.8 707 477 639 511 637
SSDD [18 895 71.8 314 793 473 642 799 746 849 308 735 582 827 734 764 699 374 805 545 657 503 655
Single Stage

MIL+LSE [15 787 480 212 31.1 284 351 514 555 528 7.8 562 199 538 503 40.0 386 27.8 51.8 247 333 463 406
Araslanov et al. [3] 874 63.6 347 599 40.1 633 702 565 714 290 710 383 767 732 705 716 550 663 470 635 603 605
Ours 885 70.0 227 572 513 586 589 573 772 309 775 602 73.6 706 549 588 524 766 562 679 553 60.8

Single Stage + CRF

Araslanov etal. + CRF [3] 892 734 373 683 458 680 727 641 741 329 749 392 813 746 726 754 581 71.0 487 677 60.1 643
Ours + CRF 89.1 722 251 629 562 61.7 608 615 795 333 788 598 768 745 59.1 628 582 770 589 709 598 638

Table 5: Class-wise Mean Intersection over Union (%) accuracy (higher is better) on Pascal VOC 2012 test set [9].
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Figure 5: From top to bottom rows: Expanding Distance Fields, refined features, filtered refined features, and final pseudo-
mask. Epoch-by-epoch progressions of generated pseudo-mask with corresponding expanding distance field. It can be seen
that in early epochs, when features are not well defined, the expanding distance fields prevents inclusion of “bad” features
in the intermediate pseudo-mask. As features improve, the expanding distance field allows more features in the final output.
The initial pink pseudo-mask is the point blot. Light blue pixels represent background class.
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