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1. Notation

Notations used in multiple sections of this paper are defined here for fast reference. Auxiliary tasks (ϕ1, ϕ2) and the
main VLN task ϕV LN constitute the set of tasks Φ. Inputs and embeddings are specified as l (linguistic), v (visual), and η
(multimodal). A complete textual instruction is denoted as τ, ς is a span, and ψ is a perspective. Linguistic and visual inputs
for the PM-VLN are denoted as (ı′t, ψt) and embeddings processed in prioritisation operations are (el, ev). In contrast, U
denotes a set of embeddings from the main model, which are derived from inputs (ēη, ψcat). The notations ∆ and

⊕
are

respectively visual boost filtering and self-attention operations. Table 1 provides a reference source for standard notation
appearing throughout this paper. Other notations are defined in the sections where they are used.

Notation Usage in this paper
A Matrix
AA Identity matrix
B, b Bias
D Dataset
Train,Dev, Test Dataset partitions
∃ Exists
∀ For every (eg member in a set)
g Function
H Hypothesis
L Layer of a model
len Length
µ Mean
n Number of samples
ν Or
P Probability
q Algorithm
S Signal detected
σ Standard deviation
Θ Set of parameters
W,w Set of weights
|x| Sequence
≜ Equal by definition

Table 1: Reference List for Standard Notation.



2. Additions to the Method Section
2.1. Theoretical Basis for Cross-modal Prioritisation

This section provides a theoretical basis for a hierarchical process of cross-modal prioritisation that optimises attention
over linguistic and visual inputs. In this section we use q to denote this process for convenience. During the main task ϕV LN ,
q aligns elements in temporal sequences τ andRoute and localises spans and visual features w.r.t. a subset of all entities Ent
in the routes:

q = ∥xl − xv∥ →
subject to

maxPDEnt
[τ, Route] ≤ R (1)

Inputs in ϕV LN consist of a linguistic sequence τ and a visual sequence Route for each trajectory j in a set of trajectories.
As a result of the process followed by Chen et al. [4] to create the Touchdown task, these inputs conform to the following
definition.

Definition 1 (Sequences refer to corresponding entities). At each step in j, |xl| and |xv| are finite subsequences drawn
from τj and Routej that refer to corresponding entities appearing in the trajectory entj ⊂ Ent.

In order to simplify the notation, these subsequences are denoted in this section as xl and xv . Touchdown differs from
other outdoor navigation tasks [5] in excluding supervision on the alignment over cross-modal sequences. Furthermore
len(τj) ̸= len(Routej) and there are varying counts of subsequences and entities in trajectories. In an approach to ϕV LN

formulated as supervised classification, an agent’s action at each step αt ≡ classification ct ∈ {0, 1} where c is based on
corresponding entt in the pair (xl, xv)t. The likelihood that ct is the correct action depends in turn on detecting S signal in
the form of entt from noise in the inputs. The objective of q then is to maximise PS for each point in the data space.

The process q is composed of multiple operations to perform two functions of high-level alignment gAlign and localisation
gLoc. At the current stage stg, function gAlign selects one set of spans φstg ∈ (φ1, φ2, . . . , φn)

where stg


Start, if t = 0

End, if t = −1

∀ stgother, n ∈ N ∈
∑n1

n=1 > t−1 otherwise.

This is followed by the function gLoc, which predicts one of ςscnt0 ∨ ςscnt0−1
as the span ς relevant to the current

trajectory step scnt

where scnt

{
scnt0, if (τ, ψt) = 0

scnt0−1, otherwise.

We start by describing the learning process when the agent in ϕV LN is a transformer-based architecture Enc+ Clas ex-
cluding an equivalent to q (e.g. VisualBERT in Table 1 of the main report). Enc+Clas is composed of two core subprocesses:
cross-modal attention to generate representations q(

⊕
(L⇐⇒ Ṽ )) and a subsequent classification Clas(ẽη

′).
Definition 2 (Objective in Enc+ Clas). The objective Obj1(θ) for algorithm q(

⊕
(L⇐⇒ Ṽ ), where L and V are each

sequences of samples {x1, x2, . . . , xn}, is the correspondence between samples xl and xv presented at step t in
∑n

i=1 ti =
t1 + t2, . . . + tn.

It is observed that in the learning process forEnc+Clas, any subprocesses to align and localise finite sequences xl and xv
w.r.t. entj are performed as implicit elements in the process of optimising Obj1(θ). In contrast the basis for the hierarchical
learning process enabled by our framework FLPM - which incorporates qPM with explicit functions for these steps - is given
in Theorem 1.

Theorem 1. Assuming xl and xv conform to Definition 1 and that ∀ x ∈ L ∃ x ∈ V , an onto function gMap = mx+b,m ̸=
0 exists such that:

gMap(xl, xv) → max
[
ent

(xl,xv)
j ∈ Ent

]
(2)

In this case, additional functions gAlign and gLoc - when implemented in order - maximise gMap:

max PSentj
= max gMap(xl, xv) →

subject to
(−−−−−−−−−−−−→gAlign, gLoc, gMap) ∀ ent(xl,xv)

j ∈ Lj ∩ Vj (3)

Remark 1 Let P (max gMap) in Theorem 1 be the probability of optimising gMap such that the number of pairs N (xl,xv)

corresponding to entj ∈ Lj ∩ Vj is maximised. It is noted that N (xl,xv) is determined by all possible outcomes in the set of
cases {(xl, xv) ⇔ entj , (xl, xv) ⇎ entj , xl ⇎ xv}. As the sequences of instances i in xl, xv and entj are forward-only,
it is also noted that N (xl,xv)

t+1 < N
(xl,xv)
t if enti ̸∈ xli, enti ̸∈ xvi, or entxl

i ̸= entxv
i . By definition, N (xl,xv)

t+1 > N
(xl,xv)
t



if P (enti = xli = xvi) - where the latter probability is s.t. processes performed within finite computational time CT (n) -
which implies that P (max gMap)|P (enti = xli = xvi).

Remark 2. Following on from Remark 1, CT (nP (enti=xli=xvi)) when q contains gt, and
function gt(max(N (xl,xv) ⇒ entj ∈ Lj ∩ Vj), where gt ∈ G < CT (nP (enti=xli=xvi)) when q does not contain
gt < CT (nP (enti=xli=xvi)) when q contains gt, and function gt(max(N

(xl,xv) ⇏ entj ∈ Lj ∩ Vj).
Discussion In experiments, we expect from Remark 1 that results on ϕV LN for architectures such as Enc+Clas - which

exclude operations equivalent to those undertaken by the onto function gMap - will be lower than the results for a framework
FLPM over a finite number of epochs. We observe this in Table 1 of the main report when comparing the performance of
respective standalone and + FLPM for VisualBERT and VLN Transformer systems. Poor results for variants (a) and (h) in
Tables 2 and 3 of the main report in comparison to FLPM + VisualBERT(4l) also support the expectation set by Remark 2 that
performance will be highly impacted in an architecture where operations in gMap increase the number of misalignments.

Proof of Theorem 1 We use below a∗ for a generic transformer-based system that predicts α on (L, V ), ∇x for
gradients, and Θa∗ to denote ΘEnc+Clas ν ΘEnc+q . Let sequence xl = [ent1, ent2, . . . , entn1 ] and sequence xv =
[ent1, ent2, . . . , entn2

], where n1 and n2 are unknown. Furthermore at any point during learning, PS(xl, xv) is spread
unevenly over entj in relation to Θa∗ ≈ X .

Propositions We start with the case that ∃ entj : ent(xl) and ent(xv). CT (nEnt∈L∩V ) for Θa∗+gt <
CT (nEnt∈L∩V ) for Θa∗ where gt accounts for ∆(Len1, Len2). We next consider the case where ∄ entj :

ent(xl) ν ent(xv). Where ∄ gLoc then P
(xl,xv)
S < ∃ gLoc P

(xl,xv)
S . We conclude with the case where ∃ Ent : xl ν xv .

In PA∗
S ent(xl)

⊕
ent(xv) when ent(xl) ̸= ent(xv).

As (EntL, EntV ) ⇒ Ent, Θa∗ ≈ max(N (xl,xv)) ∈ X . P
(xl,xv)
S where enti = xli = xvi >

enti ∈ Θa∗ ≈ max(N (xl,xv)). Furthermore P ∃ ent ∈ ≈ (enti) > ∄ ent ̸≈ enti. Therefore
slope∇x increases and CT (nEnt∈L∩V ) for Θa∗+q < CT (nEnt∈L∩V ).

2.2. Visual Boost Filtering

We provide further description on the initial operations conducted during feature-level localisation. Parameterised visual
boost filtering as proposed by Carranza et al. [3] is applied to perspectives. Let ConvV BF be a convolutional layer with
a kernel κ and weights W that receives as input ψt. In the first operation gUSM , a Laplacian of Gaussian kernel κLoG is
applied to ψt. The second operation gV BF consists of subtracting the output ev from the original tensor ψt:

gV BF (ev) = (λ− 1)(ev)− g(USM)(ψt) (4)

where λ is a learned parameter for the degree of sharpening.
A combination of gUSM and gV BF is equivalent to adaptive sharpening of details in an image with a Laplacian residual [2].

Here operations are applied directly to ev and adjusted at each update of the convolutional layer with a parameterised control
βλ. In the simple and efficient implementation from [3], σ in the distribution LoG(µj , σj) is fixed and the level of boosting
is reduced to a single learned term

∆z(x1, x2) = βλ(
∑
j

(AA′
κij

−AWκij
)z) (5)

where AW is a matrix of parameters and AA′ is the identity.

3. Datasets
3.1. Generation and Partition Sizes

The MC-10 dataset consists of visual, textual and geospatial data for landmarks in 10 US cities. We generate the dataset
with a modified version of the process outlined by [1]. Two base entity IDs - Q2221906 (“geographic location”) and Q83620
(“thoroughfare”) - form the basis of queries to extract entities at a distance of <= 2 hops in the Wikidata knowledge graph1.
Constituent cities consist of incorporated places exceeding 1 million people ranked by population density based on data for
April 1, 2020 from the US Census Bureau2. Images and coordinates are sourced from Wikimedia and text summaries are
extracted with the MediaWiki API. Geographical cells are generated using the S2 Geometry Library3 with a range of n
entities [1, 5]. Statistics for MC-10 are presented by partition in Table 2. As noted above, only a portion of textual inputs are
used in pretraining and experiments.

1https://query.wikidata.org/
2https://www.census.gov/programs-surveys/decennial-census/data/datasets.html
3https://code.google.com/archive/p/s2-geometry-library/

https://query.wikidata.org/
https://www.census.gov/programs-surveys/decennial-census/data/datasets.html
https://code.google.com/archive/p/s2-geometry-library/


Train Development
Number of entities 8,100 955
Mean length per text summary 727 745

Table 2: Statistics for the MC-10 dataset by partition.

TR-NY-PIT-central is a set of image files graphing path traces for trajectory plan estimation in two urban areas. Trajecto-
ries in central Manhattan are generated from routes in the Touchdown instructions [4]. LinksE connectingO in the Pittsburgh
partition of StreetLearn [7] are the basis for routes where at least one node is positioned in the bounding box delimited by
the WGS84 coordinates (40° 27’ 38.82”, -80° 1’ 47.85”) and (40° 26’ 7.31”, -79° 59’ 12.86”). Labels are defined by step
count cnt in the route. Total trajectories sum to 9,325 in central Manhattan and 17,750 in Pittsburgh. In the latter location,
routes are generated for all nodes with 50 samples randomly selected where cnt =< 7 and 200 samples where cnt > 7. The
decision to generate a lower number of samples for shorter routes was determined by initial tests with the ConvNeXt Tiny
model [6]. We opt for a maximum cnt of 66 steps to align with the longest route in the training partition of Touchdown. The
resulting training partition of samples for Pittsburgh consists of 17,000 samples and is the resource used to pretrain gPMTP

in the PM-VLN module.

3.2. Samples from Datasets

In auxiliary task ϕ2, the gPMF submodule of PM-VLN is trained on visual, textual, and geodetic position data types. Path
traces from the TR-NY-PIT-central are used in ϕ1 to pretrain the gPMTP submodule on trajectory estimation. Samples for
entities in MC-10 and path traces in TR-NY-PIT-central are presented in Figures 1 and 2.

Instruction:

"233rd Street is a local station
on the IRT White Plains Road
Line of the New York City
Subway."


Coordinates:
Point(-73.857222 40.893333)

Instruction:

"The Laramie State Bank
Building is an Art Deco building
at 5200 W. Chicago Avenue, in
Chicago's Austin community."


Coordinates:
Point(-87.755833 41.895159)

Instruction:

"Independence Hall is a
historic civic building in
Philadelphia, Pennsylvania
in which both the United
States Declaration of
Independence and the
United States Constitution
were debated and adopted."


Coordinates:
Point(-75.15 39.948888888)

Instruction:

"Frederick Law Olmsted
National Historic Site is a
United States National Historic
Site located in Brookline,
Massachusetts, a suburb of
Boston."


Coordinates:
Point(-71.1322 42.325)

Figure 1: Samples from the MC-10 dataset.

Figure 2: Samples from the TR-NY-PIT-central dataset with path traces representing routes in central Pittsburgh.



4. Code and Data
Source code for the project and instructions to run the framework are released and maintained in a public GitHub repository

under MIT license (https://github.com/JasonArmitage-res/PM-VLN). Code for the environment, navigation,
and training adheres to the codebases released by [8] and [4] with the aim of enabling comparisons with benchmarks intro-
duced in prior work on Touchdown. Full versions of the MC-10 and TR-NY-PIT-central datasets are published on Zenodo
under Creative Commons public license (https://zenodo.org/record/6891965#.YtwoS3ZBxD8).
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