
Supplementary Material - GLAD: A Global-to-Local Anomaly Detector

Aitor Artola1,2, Yannis Kolodziej2, Jean-Michel Morel1, Thibaud Ehret1
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1. Global weight decay
Figure 1 shows the decay of the weights πk of the global model trained on the features of layers 2 and 3 of WideResnet50-2

for all classes of the MVTec dataset.

2. Quantile scoring
The figure 2 shows the evolution of the average AUROC on MvTec database with the features of WideResnet50-2 as a

function of the quantile chosen for the image scoring.

3. Local Weight maps
We show different examples of weight and local sparsity maps learned on features from layer 1 of WideResnet50-2 in

Figure 3 (bottle), Figure 4 (cable), Figure 5 (metal nut), Figure 6 (screw) and Figure 7 (zipper). We also show different
examples of weight and local sparsity map on textures in Figure 8 (leather), Figure 9 (carpet) and Figure 10 (tile). These
results show that for texture, the local model is not sparse: Most Gaussians are used at most positions.

4. Additional heat maps
Additional heat maps for the different classes of the MVTec dataset are shown in Figure 11 and Figure 12.

5. Robustness
We present the detailed results on the randomized MVTec dataset for our method in Table 1, for MahaAD [3] in Table 2,

for PaDim [1] in Table 3, for CFlow-ad [2] in Table 4 and for DRÆM [4] in Table 5.
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Figure 1. Decay of the global weights πk in the global mixtures for the second (left, d = 512) and third (right, d = 1024) layers of
WideResNet50-2. The dot indicates the Gaussian from which πk < (d+1)/|Ck|i. From that point the Gaussians’ covariance matrices are
degenerate. The exact number of Gaussians kept for each class is indicated in the top right of the plot.
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Figure 2. Average Auroc with WideResnet50-2 features, on MvTec AD objects and texture, with respect to the q-quantile chosen for
scoring and detection at the image level. The highest AUROC is for a quantile of 0.49%.
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Figure 3. Example of a local weight map for bottle with WideResnet50-2 layer 1. Top row: the image of the bottle (left) and the sparsity
map corresponding to the number of non-zero weights per position (right). Bottom: five examples of local weight maps corresponding
each to a single Gaussian.
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Figure 4. Example of a local weight map for cable with WideResnet50-2 layer 1. Top row: the image of the cable (left) and the sparsity
map corresponding to the number of non-zero weights per position (right). Bottom: five examples of local weight maps corresponding
each to a single Gaussian.
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Figure 5. Example of a local weight map for metal nut with WideResnet50-2 layer 1. Top row: the image of the metal nut (left) and
the sparsity map corresponding to the number of non-zero weights per position (right). Bottom: five examples of local weight maps
corresponding each to a single Gaussian.
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Figure 6. Example of a local weight map for screw with WideResnet50-2 layer 1. Top row: the image of the screw (left) and the sparsity
map corresponding to the number of non-zero weights per position (right). Bottom: five examples of local weight maps corresponding
each to a single Gaussian.
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Figure 7. Example of a local weight map for zipper with WideResnet50-2 layer 1. Top row: the image of the zipper (left) and the sparsity
map corresponding to the number of non-zero weights per position (right). Bottom: five examples of local weight maps corresponding
each to a single Gaussian.
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Figure 8. Example of a local weight map for leather with WideResnet50-2 layer 1. Top row: the image of leather (left) and the sparsity map
corresponding to the number of non-zero weights per position (right). Bottom: five examples of local weight maps corresponding each to
a single Gaussian.
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Figure 9. Example of a local weight map for carpet with WideResnet50-2 layer 1. Top row: the image of carpet (left) and the sparsity map
corresponding to the number of non-zero weights per position (right). Bottom: five examples of local weight maps corresponding each to
a single Gaussian.
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Figure 10. Example of a local weight map for tile with WideResnet50-2 layer 1. Top row: the image of tile (left) and the sparsity map
corresponding to the number of non-zero weights per position (right). Bottom: five examples of local weight maps corresponding each to
a single Gaussian.



Figure 11. Other examples of heat maps obtained with the multi-scale probabilities on WideResnet50-2.



Figure 12. Other examples of heat maps obtained with the multi-scale probabilities on WideResnet50-2.



MVTech
Rd-MVTech

(average) Rd-MVTech 1 Rd-MVTech 2 Rd-MVTech 3 Rd-MVTech 4 Rd-MVTech 5

bottle 100 100 100 100 100 99.8 100
cable 99.8 92.2 92.2 92.4 92.1 91.6 92.5
capsule 97.8 96.8 94.3 95.6 98.9 97.1 98.0
hazelnut 99.8 99.7 99.9 98.9 99.9 99.9 99.9
metal nut 99.3 99.1 99.1 99.2 99.0 99.2 99.0
pill 96.3 96.6 95.6 97.3 95.5 97.2 97.4
screw 97.9 96.9 96.2 97.9 96.6 96.8 96.8
toothbrush 100 100 100 100 100 100 100

Average 98.9 97.7 97.2 97.7 97.8 97.7 98.0

Table 1. Detailed AUROC for GLAD on five randomized versions of MVTech.

MVTech
Rd-MVTech

(average) Rd-MVTech 1 Rd-MVTech 2 Rd-MVTech 3 Rd-MVTech 4 Rd-MVTech 5

bottle 100 99.9 100 99.9 99.7 100 100
cable 95.0 81.9 77.7 84.2 81.4 81.7 84.7
capsule 92.5 51.1 50.7 60.7 48.4 45.0 50.8
hazelnut 98.8 98.1 98.4 98.8 96.2 98.4 98.9
metal nut 95.0 89.4 91.6 87.4 89.1 91.1 87.6
pill 84.7 59.5 61.2 63.4 57.5 57.1 58.2
screw 79.8 53.3 50.6 55.0 52.9 46.1 61.7
toothbrush 96.4 57.5 64.2 61.4 38.6 65.3 57.8

Average 92.8 73.8 74.3 76.3 70.5 73.1 75.0

Table 2. Detailed AUROC for MahaAD [3] on five randomized versions of MVTech.

MVTech
Rd-MVTech

(average) Rd-MVTech 1 Rd-MVTech 2 Rd-MVTech 3 Rd-MVTech 4 Rd-MVTech 5

bottle 99.8 99.6 99.7 99.5 99.4 99.8 99.7
cable 92.2 75.9 77.1 74.8 75.0 78.3 74.4
capsule 91.5 74.9 77.9 74.0 75.3 77.2 70.3
hazelnut 93.3 95.8 95.6 97.0 94.2 95.3 96.8
metal nut 99.2 95.3 96.0 96.5 93.6 96.4 94.0
pill 94.4 79.4 82.2 79.3 81.0 74.2 80.2
screw 84.4 64.4 64.7 67.8 69.2 55.5 65.0
toothbrush 97.2 75.9 76.1 79.2 60.8 81.1 82.2

Average 94.0 82.7 83.7 83.5 81.1 82.2 82.8

Table 3. Detailed AUROC for PaDim [1] on five randomized versions of MVTech.



MVTech
Rd-MVTech

(average) Rd-MVTech 1 Rd-MVTech 2 Rd-MVTech 3 Rd-MVTech 4 Rd-MVTech 5

bottle 99.8 100 99.9 100 100 100 100
cable 97.1 90.6 93.3 92.7 86.6 89.2 91.1
capsule 98.6 89.6 89.6 88.3 89.2 89.4 91.4
hazelnut 99.3 99.9 100 99.8 99.8 99.9 100
metal nut 99.7 98.6 98.7 98.6 98.2 99.0 98.7
pill 99.1 88.5 91.1 85.6 90.8 86.5 88.7
screw 99.6 81.7 83.1 87.0 80.3 78.3 79.9
toothbrush 99.1 97.6 98.3 98.9 94.2 98.3 98.3

Average 99.0 93.3 94.3 93.9 92.4 92.6 93.5

Table 4. Detailed AUROC for CFlow-ad [2] on five randomized versions of MVTech.

MVTech
Rd-MVTech

(average) Rd-MVTech 1 Rd-MVTech 2 Rd-MVTech 3 Rd-MVTech 4 Rd-MVTech 5

bottle 99.2 98.2 98.3 99.0 97.9 97.5 98.4
cable 91.8 84.5 84.1 84.0 83.8 84.6 86.2
capsule 98.5 91.5 92.9 91.3 92.2 89.8 91.2
hazelnut 100 100 100 100 100 100 100
metal nut 98.7 98.4 98.6 98.0 97.4 98.9 99.3
pill 98.9 95.3 95.7 94.6 96.5 95.0 94.9
screw 93.9 94.2 96.3 93.3 94.1 92.2 95.0
toothbrush 100 99.9 100 100 100 99.7 100

Average 97.6 95.2 95.7 95.0 95.2 94.7 95.6

Table 5. Detailed AUROC for DRÆM [4] on five randomized versions of MVTech.
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Without alignment 100 99.7 97.8 99.9 99.9 96.3 91.4 100 99.6 99.9 99 98,7 100 99.6 98.9 98.7
With alignment 100 99.8 - 99.8 99.4 - 97.9 - - - - - - - - 99.1

Table 6. Impact of the alignment on the AUROC on the different categories of MVTech. A dashed entry means that the images of the
dataset are already aligned and therefore do not require an additional alignment.

6. Additional ablation studies
We present additional ablation studies in this section. In particular, we measure the impact of the alignment step on the

MVTech dataset in Table 6. We also compare the performance of the model with different number of Gaussians in Figure 13.
In most cases, more Gaussians means better performance. This figure also shows that only 50 to 60% of the Gaussians are
kept at the end of the training when starting with many Gaussians meaning that the model tries to avoid redundancy between
Gaussians and therefore produces an efficient model. Finally, we also compare the discrimination power of both EM and
K-MLE in Figure 14. It shows that even though K-MLE is more computationally efficient than EM, it discriminate defects
and good data as well as EM.
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Figure 13. Ablation study on the initial number of components K of the mixture model.
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Figure 14. Distribution of multi-scale log likelihood (sum of log likelihoods of each scale) of pixel features on the Mvtec capsule. The left
histogram is obtained with EM training while the right is with K-MLE.
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