
Supplementary Material:
Self-supervised Correspondence Estimation via Multiview Registration

Mohamed El Banani1*

mbanani@umich.edu

Ignacio Rocco2

irocco@meta.com

David Novotny2

dnovotny@meta.com

Andrea Vedaldi2

vedaldi@meta.com

Natalia Neverova2

nneverova@meta.com

Justin Johnson1,2

justincj@umich.edu

Ben Graham2

benjamingraham@meta.com

1University of Michigan 2Meta AI

1. Implementation Details
We include a subset of our source code in the supplemental material. The submitted version was taken from a larger code

base and edited to improve clarity through comments and remove any identifying information. Our approach is implemented
in PyTorch [10], but we make heavy use of PyKeOps [1] and FAISS [8] for fast CUDA implementations of kNN, as well as
PyTorch3D [11] and Open3D [12] for 3D transformations and alignment. We discuss several key design choices below and
refer the reader to our code submission for the exact details. For more details on SE(3) Transformation Synchronization, we
refer the reader to Sec. 3.

Feature Extraction. We use a modified ResNet-18 [7] as our feature extractor. Since the ResNet architecture was designed
for image classification, it performs aggressive downsampling to reduce the spatial dimension of the feature grid to allow
the network to be more light-weight while increasing the receptive field for each pixel. However, our application would
benefit from maintaining a high resolution to allow for accurate matching. As a result, we modify ResNet to remove most
of the down-sampling, only down-sampling by a factor of 2× twice within the network. During training, we down-sample
the input to a dimension of 240×320. We find that this allows us to increase the speed of training, without impacting the
test-time performance on images of resolution 480×640. We set the output feature dimension to 128. While previous work
on self-supervised learning was restricted to small feature dimensions due to a slow kNN implementation [4, 5], we use the
faster kNN implementations provided by PyKeOps and FAISS.

Correspondence Estimation. We use the kNN functions provided by FAISS [8] and PyKeOps [1] in our implementation.
While FAISS provides a faster kNN implementation, PyKeOps provides more flexibility in the distance function that can be
used. As a result, we use FAISS for the initial feature-based correspondence estimation, and use PyKeOps for finding kNN
based on both features and geometry for the geometry-aware ratio test. In all cases, we filter the correspondence and only
keep the top 500 correspondences.

Confidence Threshold. We only apply confidence thresholding to non-adjacent frames; i.e., |i − j| > 1. We do this as
we find that some adjacent pairs can still have a low pair-wise confidence despite having large overlap. Through excluding
adjacent pairs from thresholding, we can guarantee that synchronization is possible for all sequences. We set the confidence
threshold to γ = 0.4 which allows us to ensure large overlap as shown in Figure 3 in the main paper.

Refinement. Given the synchronized views, we resample correspondences based on both feature similarity and spatial
proximity of points. This allows us to sample better correspondences as shown in Figure 4 of the main paper. We set the
weighting between feature and spatial distance to α = 10.0 based on preliminary experiments.

* Work done during an internship at Meta AI.

2. Qualitative Results
We include additional qualitative results to provide a better sense of our model’s performance. We also clarify some of

the color schemes used throughout the paper.
Correspondence color. We color-code our correspondence using their 3D error. Specifically, correspondences with an error
of less than 5 cm were plotted in dark green, errors between 5 cm and 10 cm were plotted in yellowish green, errors between
10 cm and 15 cm were plotted in orange, and errors larger than 15 cm were plotted in red.
Correspondence Estimation. We provide additional qualitative examples of correspondence estimation results in Fig. 2. We
find that for easy cases that involve the camera panning or zooming, all approaches perform fairly well (rows 1-3). Meanwhile,
cases with large camera rotation can be challenging to all models, with different models failing for different cases. We find
that our model can overcome those challenges in some cases where some prior approaches have limited performance (rows
4-9). In cases with repeated textures, our model can inaccurately predict a consistent set of correspondences that are accurate,
as shown in row 10 of Fig. 2. We find that LoFTR can succeed in such a case, likely due to its use of cross-attention, which
is noted by the authors of both LoFTR and SuperGlue. Future iterations of self-supervised correspondence estimation should
explore the incorporation of attention modules and integrating it with geometric-aware matching. Finally, we observe that
some cases are challenging to all models, especially when there is a very large camera motion such as looking at the same
object from opposing sides (row 11) or when there is limited overlap and plain textures (row 12).
Correspondence Refinement. We provide qualitative examples of estimated correspondences before and after refinement
in Fig. 3. In many cases, the initial feature-based correspondences are already fairly accurate. In those cases, we find that
refinement results in the correspondences being more spread out and increasing in accuracy. More interesting cases involve
a very noisy initial set that can be refined into a dense, accurate set of correspondences. This can be seen clearly in rows 5-7
in Fig. 3. Finally, in some difficult cases, our initial estimation is extremely noisy, and our model is unable to recover from
that.

3. Camera Synchronization
Here we explain the Camera Synchronization algorithm (Section 3.4) in a bit more detail.
Notation for SE(3) matrices. Recall that for pairs of frame i < j,

Ti,j = argmin
T∈SE(3)

∑
inliers (p,q,w)∈Ci,j

w||xq −T(xp)||22

is our estimate for the relative transformation from camera i to camera j. We can write Ti,j as a 4x4 matrix consisting of a
rotation and translation,

Ti,j =

[
R 0
t 1

]
, R ∈ SO(3), T ∈ R3.

Ti,j acts on points x = (x1, x2, x3, 1) in homogeneous form by right multiplication

Ti,j(x) = (x1, x2, x3, 1)×Ti,j .

Confidence-weighted transformations. Recall that ci,j is a confidence value attached to Ti,j for i < j. Let S+ ⊂ R4×4

denote the set of 4× 4 matrices with the form:

α

[
R 0
t 1

]
, α ≥ 0, R ∈ R3×3, T ∈ R3.

Elements of S+ can be projected onto SE(3) by dividing by α, and then using SVD to project R onto SO(3).
Note that S+ is closed in the sense that if A,B ∈ S+ and α ≥ 0, then A+B, A×B and αA are all in S+ too.

Confidences as jump probabilities We will make two simpifying assumptions. First, we will assume that the ci,j have been
scaled so that the rows sum to one: for all i,

∑
j ci,j = 1. Second, we assume that for each i, ci,i+1 > 0. With these

assumptions in place, C = [ci,j] is the stochastic matrix for an N -state Markov chain (Xt),

ci,j = P[Xt+1 = j | Xt = i], t = 0, 1, 2,

The Markov chain is [9]:

• lazy: P[X1 = i | X0 = i] = ci,i = 1/2 as ci,i =
∑

j ̸=i ci,j ,

• connected: for all i, j, for some t sufficiently large P[Xt = j | X0 = i] = (Ct)i,j > 0, and

• time-reversible: πiCi,j = πjCj,i for all i, j with π ∈ [0, 1]N the equiilibrium distribution.

By the Perron–Frobenius theorem, and the laziness property, the eigenvalues of C can be written as

1 = λ1 > λ2 ≥ ...λN ≥ 0. (1)

The spectral gap 1− λ2 > 0 so convergence to equilibrium is exponential,

P[Xt = j | X0 = i] = (Ct)i,j = πj + O(λt
2).

The pairwise-transformations matrix In Section 3.4, equation (5), we define a 4N × 4N matrix A,

A =

c1,1I4 c1,2T1,2 · · · c1,NT1,N

c2,1T2,1 c2I4 · · · c2,NT2,N

...
. . .

...
...

. . .
...

cN,1TN,1 cN,2TN,2 · · · cN,NI4

 ∈ SN×N
+ ⊂ R4N×4N ,

consisting of an N ×N grid of elements of S+. To motivate the definition of A, we can interpret it as generating a random
walk on the set {1, 2, . . . , N} × SE(3),

P[(Xt+1, Yt+1) = (j, Yt ×Ti,j) | Xt = i] = ci,j , t = 0, 1, . . .

The expected value in S+ of the Y -component of the walk is a weighted sum of the products of pairwise transformations.
Pairwise transformations with greater confidence contribute more strongly to the sum.

The solution to the synchronization problem is related to the eigenvectors of A. If there is a global collection of cameras
(Ti) such that Ti,j = T−1

i Tj , then A will have four independent eigenvectors with eigenvalue one, i.e.

[T1 . . .TN]× (A− I4N) = 0, [T1 . . .TN] ∈ SE(3)N ⊂ R4×4N .

All other eigenvalues λ will satisfy |λ| ≤ λ2 (c.f. inequality (1) for the eigenvalues of Markov chain Xt, and properties of
matrix determinants). As integer k → ∞, each of the N rows of Ak will converge to a globally consistent set of cameras.
The different rows will yield essentially the same solution, but differing by an SE(3) transformation of the global coordinates.

More generally, if no such perfect solution exists, then we want to find

argmin
{Ti∈SE(3):1≤i≤N}

∥[T1 . . .TN]× (A− I4N)∥2F

= argmin
{Ti∈SE(3):1≤i≤N}

∑
j

∥∥∥∥∥Tj −
∑
i

ci,jTiTi,j

∥∥∥∥∥
2

F

= argmin
{Ti∈SE(3):1≤i≤N}

∑
i,j

ci,j ∥Tj −TiTi,j∥2F .

The solution in [6] involves calculating an eigen decomposition directly. Let Arot denote the 3N × 3N matrix obtained from
A by taking the top 3× 3 elements from each sub-block of A. In the notation of [6, supplementary Sec. 2], our Arot is equal
to their “L/2+D”. Each of the 3N eigenvectors of Arot (suitably padded with zeros to increase their length from 3N to 4N ,
e.g.

[x1, x2, x3, . . . , x3N−2, x3N−1, x3N] → [x1, x2, x3, 0, . . . , x3N−2, x3N−1, x3N , 0]),

becomes an eigenvectors of A. Three of these eigenvectors with largest eigenvalues, projected onto SO(3), solve [6, Eq. 5],

argmin
{Ri∈SO(3):1≤i≤N}

∑
i,j

ci,j∥Rj −Ri × (Ti,j)1:3,1:3∥2F

Figure 1. Synchronization Benchmark. Our approach achieves the same error as Gojcic et al. [6], while being faster and more numerically
stable.

Rather than computing the eigendecomposition of A directly, we instead use power-iteration. Raising A to large powers
filters out the effect of the smaller eigenvalues. To do this efficiently, starting from A, we repeatedly takes squares to
calculate A2, then A4, and so on until A2t . Each element in A2t is then projected into SE(3) using SVD as described above;
call the resulting matrix A. A is composed of N ‘rows’, each with shape 4×4N ; each of these rows is n approximate solution
to the synchronization problem. The difference between the rows is that each row is centered around a different camera. We
choose t = O(logN) so 2t > N ; the the number of FLOPs needed to calculate A is thus O(N3 logN). In practice, the
time spent on synchronization is small compared to feature extraction and matching, as synchronization is independent of the
resolution of the images. For very larger N , a database of key-frames could be used to reduce the size of N .

Numerical stability. Empirically, we find that training using synchronizations extracted from A2t was stable. Using an
eigensolver to implement the method of [6] led to exploding gradients. The derivative with respect to a set of eigenvectors
is unstable when the eigenvalues a clustered together, as is normally the case with the largest eigenvalues of Arot; when the
pairwise rotations are compatible, the largest eigenvalues will be approximately equal.

Performance. We compare our synchronization approach to naive synchronization which aggregates the transformations
using adjacent views and the eigendecomposition approach proposed by Gojcic et al. [6]. We compare the three algorithms
on their ability to handle rotation and translation perturbation in the pairwise estimates as well as their runtime. As seen in
Fig. 1, our approach achieves the same performance as the eigendecomposition approach while being faster. Both approaches
greatly naive synchronization since they are able to use information from all pairs. Furthermore, since our approach only
relies on power iteration, it does not suffer from the numerical instability in the backward gradient discussed above.

4. Ethical Considerations and Societal Implications
Our work presents a method for self-supervised learning of correspondence estimation from RGB-D video. Our main

contribution is to demonstrate how multiview registration could be used to learn better features from RGB-D video that
perform on-par with supervised learning approaches. Advancements in this area can enable more powerful feature learners,
which can improve the overall performance of larger frameworks that use it such as SLAM or structure-for-motion. Our
technical contributions pertain to allowing models to learn from a different type of data, as a result, our societal impact is
mediated by the kind of data that we currently train on as well as the data that we can train on in the future.

In this work, we evaluated our approach on ScanNet [2]. This is a large scale dataset of indoor scenes that contains over
1500 RGB-D sequences taken at more than 700 locations. The data was collected by 20 volunteers across several countries
with most sequences captured in the United States of America and Germany. Each volunteer used a specialized capture
setup to record video sequences in private locations to which they had access. With very few exceptions, the data set is
made up of empty rooms. One salient issue with ScanNet is that most of the locations come from areas with a relatively
high household income: houses, offices, and university housing in major western cities. This is problematic given that prior
work has shown that computer vision models trained on data from countries with high household income generalize poorly to
images coming from countries with a lower mean household income [3]. Since our models were all trained on this dataset, we
would expect them to generalize poorly to images from outdoor scenes or indoor scenes coming from different geographic

areas or demographics. We note that while this could be alleviated by training our model on datasets coming from other
countries, we are unaware of any large RGB-D video datasets that would meet such criteria.

While our approach was trained on ScanNet, we developed a self-supervised approach since we hope that it can scale to
large-scale data. Given the increasing prevalence of RGB-D sensors on phones, we can expect that people will start uploading
videos to the web. Such videos will not be careful scans of scenes as the ones captured for ScanNet, and hence will not be
well-suited for 3D reconstruction algorithms. Our goal is to build systems that could easily leverage this data by being self-
supervised. However, such web-data will introduce other complications. Below, we reflect on two ethical considerations:
structural biases in representation and privacy.
Structural Bias in Representation. While the RGB-D cameras are becoming more available to consumers, their relatively
high cost means that that they will be adopted more by wealthier demographics. Hence, while we expect that the uploaded
videos will be more diverse than ScanNet, the high cost of the devices means that they will likely be used primarily by
wealthier individuals resulting in a bias in representation both across and within different countries. As a result, anyone
considering using this technology for learning features should be aware of such limitations, which could potentially be
alleviated by a more thoughtful collection process.
Privacy Concerns. People often upload videos that include other individuals who may have not consented for videos to
be uploaded or even captured with them. Such videos will inevitably include such individuals. This means that to scale our
approach to such data, we need robust filtering mechanisms that can detect such shots and exclude them from training. This
is a common challenge for any self-supervised method that hopes to scale to web data.

References
[1] Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David Collin, and Ghislain Durif. Kernel operations on the gpu, with

autodiff, without memory overflows. JMLR, 22(74):1–6, 2021. 1
[2] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. ScanNet: Richly-annotated

3D Reconstructions of Indoor Scenes. In CVPR, 2017. 4
[3] Terrance de Vries, Ishan Misra, Changhan Wang, and Laurens van der Maaten. Does object recognition work for everyone? In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 52–59, 2019. 4
[4] Mohamed El Banani, Luya Gao, and Justin Johnson. UnsupervisedR&R: Unsupervised Point Cloud Registration via Differentiable

Rendering. In CVPR, 2021. 1
[5] Mohamed El Banani and Justin Johnson. Bootstrap Your Own Correspondences. In ICCV, 2021. 1
[6] Zan Gojcic, Caifa Zhou, Jan D. Wegner, Leonidas J. Guibas, and Tolga Birdal. Learning multiview 3d point cloud registration. In

CVPR, 2020. 3, 4
[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, pages 770–778,

2016. 1
[8] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE Transactions on Big Data, 7(3):535–

547, 2021. 1
[9] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times. American Mathematical Society, 2006. 2

[10] Adam Paszke, Soumith Chintala, Ronan Collobert, Koray Kavukcuoglu, Clement Farabet, Samy Bengio, Iain Melvin, Jason Weston,
and Johnny Mariethoz. Pytorch: Tensors and dynamic neural networks in python with strong gpu acceleration, may 2017. 1

[11] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari. Accelerating
3d deep learning with pytorch3d. arXiv, 2020. 1

[12] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data processing. arXiv, 2018. 1

Figure 2. Correspondence Estimation. We present correspondence results on a variety of situations. The top three rows show a variety of
positive examples where all models performs well. The following six column present present cases where our model succeeds and other
models perform poorly. Those are typically cases with large camera motion where our model is capable of use the geometric information
and learned features to predict accurate correspondences. Finally, we report some challenging cases for our model: repetitive textures (row
10), very large camera motion (row 11), limited overlap and plain textures (row 12). While such cases are often challenging for all models,
prior approaches like SuperGlue and LoFTR can sometimes produce good correspondence for some instances.

Figure 3. Correspondence Refinement. We show the impact of correspondence refinement using depth. We present several modes of
performance. The top three rows present cases where the feature-based correspondences were already accurate and incorporating geometry
simply improved the accuracy. The following three four rows cases where refinement had a large impact on correspondence quality by
leveraging a small subset of accurate correspondences to align the scenes and then sample a more accurate set of correspondences. Finally,
we observe failure cases where the initial set is so noisy that the model cannot generate a good transformation estimate rendering refinement
useless.

