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AffineMix Data Augmentation In this subsection we il-
lustrate the steps followed to generate augmented images
using the proposed AffineMix method. We call AffineMix,
an intra data augmentation technique, as we do not use any
other image to create the augmented image, but use the
same target frame I and then apply random affine transfor-
mation on a selected movable object to get a new image I ′

as shown in algorithm 1.

Algorithm 1 Intra Data Augmentation
1: # Intra Data Augmentation step:
2: Scale← random(0.5, 1.5)
3: tx = (1.0− 1/scale)) ∗ (ox) . Offset along x
4: ty = (1.0− 1/scale)) ∗ (oy) . Offset along y
5:
6: # Affine transform according to Scale:
7: Ia = aff transform(I, 1/scale, [tx, ty])
8: La = aff transform(L, 1/scale, [tx, ty])
9: Sa = aff transform(S, 1/scale, [tx, ty])

10: Da = aff transform(D, 1/scale, [tx, ty])
11: Da = Scale ∗D a
12:
13: # Generate new image
14: M = Da ≤ D . foreground mask
15: I ′ =M � Ia + (1−M)� I . Augmented Image
16: L′ =M � La + (1−M)� I . Augmented Label
17: S′ =M � La + (1−M)� S . Augmented Softmax

We choose a random scale for depth which lies in
range(0.5, 1.5), and then perform affine transform on the
selected moving object mask M to achieve the new aug-
mented frames, which are then used during semi-supervised
semantic segmentation learning. Fig. 1 provides fur-
ther qualitative examples of proposed data augmentation
scheme.

Orthogonality In our ablation study, we confirm that en-
forcing orthogonality has a positive impact on both depth
and semantics performance. Here we show its effect on fea-
tures of different layers of the depth and semantics decoder
module, once the training has ended. Suppose a layer of
depth decoder has a dimensionality of (BxCxHxW), where
B,C,H and W represents batch size, number of channels,

Figure 1. Example Images AffineMix:Left-to-right: Original Im-
age, GT Labels, Scaled foreground mask, Augmented Image, New
label space

height and width respectively. We estimate an average inter-
channel correlation, according to following algorithm:

Algorithm 2 Inter Channel Correlation
Require: layer . Intermediate CNN feature layer

1: B,C,H,W = layer.dim
2: while c ≤ C do
3: norm = 0.0
4: while i ≤ C do
5: if i = c then
6: continue
7: else
8: corr = layer[:, i, :, :] ∗ layer[:, c, :, :]T
9: norm+ = l1 norm(corr)

10: end if
11: end while
12: norm = norm/C . average norm per layer
13: end while

We calculate the average norm as specified in Algo. 2,
for all decoder layers for both the tasks, with and with-
out OR(orthogonal regularization). In Fig. 2 (ii), we plot
average difference of correlation for four different layers
of semantics and depth decoder module, without and with
OR. As seen in the plot, we observe a positive difference
all along for both semantics and depth module, suggesting
greater inter-channel independence.
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Figure 2. (i) Class Specific mIoU: Comparative improvement in IoU numbers in increasing order. (ii) Figure shows the difference between
the average correlation between all features for semantics and depth decoder, for without (WO) OR and with OR.

Figure 3. Building blocks of the Cross Channel Affinity Module.

CCAM Module As seen in Fig. 3, architecture of CCAM
module can be divided in to three blocks namely A, B and
C, which serves three different purpose. Block A acts as
a spatial attention layer, where as Block B estimates cross
feature correlation and follows it up with channel attention
layer to give us an affinity score per feature channel, which
is then followed by Block C, which does a simple channel-
wise accumulation of affinity score to give final Affinity Ma-
trix. Fig. 3 shows individual learnable layers part of all the
three blocks in complete detail. We also present the steps
followed for calculating affinity matrix and getting resul-
tant depth and semantic features in algorithm 3.

Further Qualitative Results We have discussed in the
main paper there are certain classes within the 19 categories
present in the cityscapes dataset which have shown more
improvement compared to other saturated classes. We have
marked them as low-mIoU-classes and movable-classes
which were mainly (“rider”, “motorcycle”, “wall”, “bus”,
“truck”, and “train”) respectively. For this we plot mIoU
numbers in an increasing order 1 As seen in Fig. 2(i),
we see that most of the improvement is seen for classes
belonging to low-mIoU-classes and movable-classes. We
particularly highlight the some of the positive examples of

1Order: motorcycle, wall, fence, rider, pole, traffic-light, terrain, traffic-
sign, bicycle, train, truck, person, sidewalk, bus, building, vegetation, car,
sky, road.
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Figure 4. Example Outputs: Semantics and depth results for the same input images, showing comparative results with the baseline.

Algorithm 3 Cross Channel Affinity Block
Require: Xseg , Xdepth . Semantics and Depth features

1: # Estimate cross channel affinity:
2: Ysegatt = Spatial Attn(Xseg)
3: Ydepthatt = Spatial Attn(Xdepth)
4: YTdepthattn = Transpose(Ydepthatt)
5: i← 0
6: while i < C do . C represents number of channels
7: αi = Channel Affinity(Ysegatt ∗ YTdepthattn)
8: CT = CT + αi . concat across dimension
9: end while

10:
11: # Mutual features sharing between tasks:
12: i← 0
13: while i < C do
14: Xseg = Xseg +Xdepthi

∗ CTi . along row
dimension

15: end while
16: j ← 0
17: while j < C do
18: Xdepth = Xdepth +Xsegj ∗ CTj . along column

dimension
19: end while

these classes, as seen across different cities for test set of
cityscapes dataset in Fig. 5. We find there are quite a few
examples, where the mistakes are mainly due to a mix-up
in the predictions mainly concerning the labels belonging
to class set of bus, car, truck and train due to obvious

visual similarity. In Fig. 4, we show qualitative depth
and semantics results for the same set of input images,
highlighting improvement obtained on both tasks. Here, it
is imperative to state that it’s not necessary that we see an
improvement for both the tasks, over all input test images.
There are few classes which show minimal improvement
and also certain degenerate example images where we fail
to effectively handle unknown classes, examples of which
are discussed in Sec. 1. Example Qualitative result for
ScanNet data can be seen in Fig. 7

Training Details: Our Proposed model achieves better
performance with approximately the same number of pa-
rameters (>2000 more parameters than baseline). There is
a slight increase in the number of flops as seen in Tab. 1,
which can be mainly attributed to the matrix multiplication
step, used during the correlation calculation step in Block B
(See Fig. 3).

More Ablation Experiments We ran further set of abla-
tion experiments to verify the efficacy and impact of each
individual component. Table 2 presents the result for all
conducted experiments in detail. Observations are consis-
tent with that seen in the main paper. Inclusion of CA
helps in further consolidating the gain for depth estimation
achieving the best absolute relative error of 0.140, whereas
adding OR and AM module helps in improving the base re-
sult by 0.38 and 0.39 mIoU numbers respectively. We do
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Figure 5. Examples of Improved classes: From up-to-down:(Bus-Car), (Bus-Train), (Truck-Sign), (Truck-Sign), (Bus-Train), (Wall-
Building), (Bus-Car),(Truck,Car), (Rider, Motorcycle)
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Model Flops+ (109) Params (106)
Baseline - 87.226
Ours 0.27 87.228

Table 1. Comparative Training details. + denotes additional numbers of flops used.

Figure 6. Bad Examples:(i) Few examples where the model gets confused and makes the wrong prediction. Left-to-Right: Input image,
Baseline, Ours.

Figure 7. Example improvement between Base and Our model for scene0166 00 in ScanNet dataset. Above image shows improvement for
’Floor’, ’Screen’, ’Floor’ and ’Wall’ class respectively.

see a slight dip in mIoU while using CA, but when com-
bined with AM/OR it always performs better even for se-
mantic segmentation.

Quantitative Results We present class wise mIoU num-
ber for both ScanNet and Cityscapes dataset as shown in
Table 3 and 4. For ScanNet, we see improvement for all

the classes except for class Chair and Floor, Where as for
Cityscapes, we see improvement across all the classes, al-
beit to varying degree, with low-mIoU-classes and movable-
classes seeing the majority of gain.

Dataset: Cityscapes Cityscapes [2] consist of 2,975
training and 500 validation images with ground-truth se-
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Model Seg. Metrics Depth Metrics
mIoU↑ AbsRel↓ SqRel↓ RMSE↓ a1↑ a2↑ a3↑

Ours (CCAM) 69.35 0.142 1.653 7.230 0.824 0.957 0.988
Ours + OR 69.73 0.143 1.612 7.433 0.817 0.954 0.987
Ours + CA 69.13 0.140 1.638 7.317 0.819 0.954 0.988
Ours + CA + AM 69.74 0.144 1.471 7.158 0.812 0.955 0.988
Ours + CA + OR 69.77 0.148 1.666 7.309 0.789 0.953 0.987

Table 2. Ablation experiments showing comparative mIoU and depth results for Cityscape dataset. CA: Color Aug, OR: Orthogonal
Regularization, AM: Affine Mix

Model Wall Chair Floor Door Table Box Screen Cabinet mIoU
Base 71.04 62.90 64.50 10.60 46.50 8.70 22.00 26.20 39.50
Ours(CCAM) 72.40 60.10 62.00 21.30 48.30 11.60 25.10 31.80 41.57

Table 3. Table presents the comparative performance of 8 different classes in ScanNet dataset between the baseline and CCAM enabled
model.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mIou
Base 35.74 44.92 46.97 47.21 52.11 49.88 54.12 65.02 66.07 66.60 72.56 72.66 76.00 80.93 89.93 90.41 92.42 93.34 96.79 68.09
Ours 40.53 52.60 47.97 53.11 53.63 53.30 56.14 66.38 67.47 75.17 77.08 73.31 78.14 83.91 90.35 90.57 93.03 93.78 97.12 70.72
Change 4.79↑ 7.68↑ 1.00↑ 5.91↑ 1.52↑ 3.42↑ 2.02↑ 1.36↑ 1.40↑ 8.57↑ 4.52↑ 0.65↑ 2.14↑ 2.98↑ 0.42↑ 0.16↑ 0.61↑ 0.44↑ 0.33↑ 2.63↑

Table 4. Table presents the comparative performance for all 19 classes in Cityscapes dataset. Order of class is: motorcycle, wall, fence,
rider, pole, traffic-light, terrain, traffic-sign, bicycle, train, truck, person, sidewalk, bus, building, vegetation, car, sky, and road.

mantic segmentation labels, collected from 21 different Eu-
ropean cities. For semi-supervised segmentation, we use
only 2,975 labeled training images, which are randomly
split into a labeled and an unlabeled subset in accordance
with number of labelled images being used for training.
ScanNet During our experiment with ScanNet [3], we
mainly focus on scenes which are from Living room, Bed-
room and Office, which mainly consist of 8 (parent) classes
as shown in fig. 8, to make joint-training bit smoother. Us-
ing which we get a new train/val/split of 76/15/11 scenes
respectively. All other classes were set to ignore class
during both training and evaluation. Also, since we have
the ground-truth pose for ScanNet, we use it during depth
prediction. We follow similar data preprocessing steps
for ScanNet during training and evaluation as done for
Cityscapes.

Model Architecture It comprises of a shared encoder
network which is ResNet101 [4] with output stride as 16.
We use two different decoder modules for semantics and
depth respectively, which is a combination of Deeplabv3 [1]
with a U-Net [5] decoder. ASPP Blocks [4] with dilation
rates of 6, 12, and 18 are used for aggregating encoder fea-
tures of different scales. U-Net [5] decoder has five upsam-
pling blocks with skip connections, with output channel as
256, 256, 128, 128, and 64 respectively.

1. Limitations
In this section, we briefly discuss specific limitations

of our method. We start with illustrating examples of in-

put images, where we fail to handle unseen and confus-
ing scenarios and make wrong predictions. We find there
are specific cases, as shown in Fig. 6(i) (row 1, 2), where
picture/painting and transparent glass on the bus’s exterior
makes it difficult for the model to classify bus correctly.
We also find that images containing flyover or overhead
bridges (See Fig. 6(i) (row 3, 4)) are either misclassified
or missed. During our experiment, we also find that there
is little impact mIoU-wise on classes such as traffic-sign,
fence, and vegetation. In Figure 6 (ii), we highlight certain
examples of augmented images that need not necessarily
obey the geometry of the scene and have hanging, perspec-
tive and truncated artifacts (due to occluding stationary ob-
ject) respectively. These are particularly seen in cases that
involve large depth changes during the data augmentation
and is enhanced due to using an average camera intrinsics
for all scenes. Another direction of improvement would be
to further study effects arising from incorrect lighting aris-
ing due to proposed data augmentation, which needs to be
investigated to understand its impact on both tasks. We look
forward to work towards finding meaningful answers for the
aforementioned scenarios in future work.
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Figure 8. Above figure shows hierarchical class structure, with 8 parent classes. This also shows the mapping between classes defined in
NYU [6] and ScanNet dataset.
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