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Implementation Details

Fine-tuning. Following [2], in order to fine-tune on
the CUB-70 dataset a VGG19 model pre-trained on Image-
Net dataset, we superseded the last Max-Pooling layer to a
new one with stride 4 and kernel size 4. Additionally, we
changed the probability parameter of the Drop-Out layer in
the classifier part of VGG19 to 0.2. We applied a similar
change for the feature extraction part of the VGG19 back-
bone of the ProtoPNet architecture. In both cases, we re-
placed the last Fully-Connected layer of the models with a
new one, initialized randomly, with the output size equal to
the number of classes.

Training Optimizer. For the binary CelebAMask-HQ
classification task, we utilized the Adam optimizer with the
learning rate 1e−4. To adjust the learning rate during train-
ing phase, we decay the learning rate with a factor equal
to 0.95 after each epoch. This setting was applied for the
training of the three CNN architectures as well as the Topic-
based interpretation method.

For the classification on the CUB-70 dataset, we used the
SGD optimizer with learning rate 1e − 3, momentum 0.9,
and weight decay 1e − 4. Besides, we decay the learning
rate with factor 0.1 every 30 epochs. These setting were
used for training the three base CNN architectures. Further-
more, Adam optimizer with learning rate 1e− 3 and weight
decay 0.95 was used for training phase of the Topic-based
interpretation method. Following [1], we adjusted the op-
timizer settings for training the ProtoPNet architecture on
both datasets. We selected and adjusted these optimizers
through different experiments in order to reach high classi-
fication performance for each model.

Topic-based interpretation. The hyper-parameter in
Topic-based interpretation method is the number of topic
vectors. [4] evaluated their method on a synthetic dataset
and the AwA dataset [3]. However, for determining the
number of topic vectors for CelebAMask-HQ and CUB-70
dataset we examined different values on which the method
can classify images with high accuracy and close to those
of ProtoPNet as well as base CNNs VGG19, Densenet121,

and Resnet50. Therefore, for the CelebAMask-HQ classifi-
cation task we selected 20 as the number of topic vectors for
the three CNNs. In a similar manner, the hyper-parameter
was set to 300 in CUB-70 classification task. Since the
CUB-70 dataset has fine-grained categories, then we needed
to increase the complexity of the Topic-based interpretation
method to be trained with high accuracy close to those of
ProtoPNet as well as base CNNs VGG19, Densenet121, and
Resnet50.

ProtoPNet. The shape of the prototype parameter from
the different ProtoPNet-based methods was defined fol-
lowing several tests. For models trained on ClebAMask-
HQ, they were set to (20, 128, 1, 1), (24, 128, 1, 1), and
(30, 1024, 1, 1) for the considered VGG19, Densenet121,
and Resnet50, respectively.

For the three CNN models trained on the CUB-70
dataset, this parameter was set to (350, 128, 1, 1). In these
settings, the first element (i.e., 20, 24, 30, and 350) indicates
the number of prototypes in the prototype layer and the rest
of the elements (i.e., [128, 1, 1] and [1024, 1, 1]) indicate the
shape of prototype vectors.

Visual Explanations with High / Low Coverage
Figures 1-4 illustrates visual explanations with the high-

est and lowest Intersection-over-Union (IoU) scores. More
specifically, Figures 1 and 2 show the visual explanations
with the highest and lowest IoU scores for each of the inter-
pretation methods over CNNs trained on CUB-70 dataset.
Similarly, Figures 3 and 4 illustrate the results on CelebA
dataset.

As can be seen in Figures 1 (top) and 2 (top), the visual
explanations with the highest coverage rates highlight the
entire or different parts of birds. In contrast, the visual ex-
planations with the lowest coverage rate (Figures 1 (bottom)
and 2 (bottom)) highlight the foliage of the trees and plants
in the background.

The similar trend can be seen in the CelebA dataset. The
visual explanations with the highest coverage rates showed
in Figures 3 (top) and 4 (top) highlight small parts such as



nose, lips, and bigger parts such hair and skin. Figures 3
(bottom) and 4 (bottom), in contrast, show that visual ex-
planations with the lowest coverage rate highlight the back-
ground.

Illustrations with a Higher Resolution
We illustrate some figures related to the visual explana-

tions and the quantitative evaluation result, presented in the
main paper, in a larger size to be able to see the details in
them.

Figures 5, 6, and 7 show the visual explanations of the
investigated interpretation methods over the CNNs VGG19,
Densnet121, and Resnet50 trained on the CUB-70 dataset,
respectively. Figures 8, 9, and 10 illustrate the visual ex-
planations results over the CNNs VGG19, Densnet121, and
Resnet50 trained on the CelebA dataset, respectively.

Figure 11 illustrates the part-level coverage rate com-
parison, presented in the main paper with a higher res-
olution. As can be seen, VEBI has the higher cov-
erage rate in the higher number of semantic parts in
models trained on CUB-70 and CelebA datasets, such
as Densenet121-CUB70, ResNet50-CUB70, Resnet50-
CelebA, and VGG19-CelebA.

More visual explanation results on CelebA
dataset

In this section, we illustrate more visual explanation re-
sults of VEBI, ProtoPNet, and Topic-based interpretation
methods on CelebA dataset. Figures 12, 13, and 14, show
the results on CNNs VGG19, Densenet121, and Resnet50,
respectively.

Visualization results of Original VEBI
According to the section 4 (Compared methods), origi-

nal VEBI considers the activation maps computed by all the
convolutional layers. Hence, in this section, we illustrate
the visual explanation results of the original VEBI gener-
ated by the proposed evaluation protocol on the considered
CNNs and datasets. Figures 15, 16, and 17 show the vi-
sual explanation examples on VGG19, Densenet121, and
Resnet50 trained on CelebA dataset, respectively. Also,
Figs. 18, 19, and 20 show 36 examples of visual ex-
planations from 18 classes of CUB70 on CNNs VGG19,
Densenet121, and Resnet50, respectively.

The captions in Figs. 15-20 show the pairs convolutional
layer and filter identified by the original VEBI. For exam-
ple, L6 F10, L11 F261, L15 F334 indicates that the pro-
posed evaluation protocol generates the visual explanation
(section 3.1. Interpretation with Explanation Capability)
through combining the interpretation heatmaps from pairs
convolution layers and filters (6,10), (11,261), and (15,334)
identified by original VEBI.
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Figure 1. Visual explanations with the highest (top) and lowest (bottom) IoU coverage for each of VEBI, ProtoPNet, and Topic-based
interpretation methods over CNNs VGG19 and Densenet121 trained on CUB-70 dataset.
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Resnet50-CUB70

Figure 2. Visual explanations with the highest (top) and lowest (bottom) IoU coverage for each of VEBI, ProtoPNet, and Topic-based
interpretation methods on Resnet50 trained on CUB-70 dataset.
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VGG19-CelebA Densenet121-CelebA

Figure 3. Visual explanations with the highest (top) and lowest (bottom) IoU coverage for each of VEBI, ProtoPNet, and Topic-based
interpretation methods over CNNs VGG19 and Densenet121 trained on CelebA dataset.
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Resnet50-CelebA

Figure 4. Visual explanations with the highest (top) and lowest (bottom) IoU coverage for each of VEBI, ProtoPNet, and Topic-based
interpretation methods on Resnet50 trained on CelebA dataset.
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VGG19-CUB70
Figure 5. Visual explanations of VEBI, ProtoPNet, and Topic-based interpretation methods on VGG19 trained on the CUB-70 dataset.
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Densenet121-CUB70
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Figure 6. Visual explanations of VEBI, ProtoPNet, and Topic-based interpretation methods on Densenet121 trained on the CUB-70 dataset.
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Figure 7. Visual explanations of VEBI, ProtoPNet, and Topic-based interpretation methods on Resnet50 trained on the CUB-70 dataset.
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Figure 8. Visual explanations of VEBI, ProtoPNet, and Topic-based interpretation methods on VGG19 trained on the CelebA dataset.



V
E

B
I

P
ro

to
P

N
et

To
pi

c-
ba

se
d 

In
te

rp
re

ta
tio

n
In

pu
t

Densenet121-CelebA
Figure 9. Visual explanations of VEBI, ProtoPNet, and Topic-based interpretation methods on Densenet121 trained on the CelebA dataset.
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Figure 10. Visual explanations of VEBI, ProtoPNet, and Topic-based interpretation methods on Resnet50 trained on the CelebA dataset.
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Figure 11. Semantic part-level comparison among model interpretation methods VEBI, ProtoPNet, and Topic-based over CNNs VGG19,
Densenet121, and Resnet50 trained on the CelebA and CUB-70 datasets.
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Figure 12. Visual explanations of VEBI, ProtoPNet, and Topic-based interpretation methods on VGG19 trained on the CelebA dataset.
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Figure 13. Visual explanations of VEBI, ProtoPNet, and Topic-based interpretation methods on Densenet121 trained on the CelebA dataset.
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Figure 14. Visual explanations of VEBI, ProtoPNet, and Topic-based interpretation methods on Resnet50 trained on the CelebA dataset.
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Figure 15. Visual explanations of original VEBI on VGG19 trained on CelebA dataset. The caption shows the pairs convolutional layers
and filters identified by the original VEBI.
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Figure 16. Visual explanations of original VEBI on Densenet121 trained on CelebA dataset. The caption shows the pairs convolutional
layers and filters identified by the original VEBI.
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Figure 17. Visual explanations of original VEBI on Resnet50 trained on CelebA dataset. The caption shows the pairs convolutional layers
and filters identified by the original VEBI.
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Figure 18. Visual explanations of original VEBI on VGG19 trained on CUB70 dataset. The caption shows the pairs convolutional layers
and filters identified by the original VEBI.
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Figure 19. Visual explanations of original VEBI on Densenet121 trained on CUB70 dataset. The caption shows the pairs convolutional
layers and filters identified by the original VEBI.
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Figure 20. Visual explanations of original VEBI on Resnet50 trained on CUB70 dataset. The caption shows the pairs convolutional layers
and filters identified by the original VEBI.


