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This supplementary material provides additional details for
the solvers presented in the main paper. Sec. 1 describes a
special reparameterization of the product KR of the calibra-
tion matrix K and the rotation matrix R, which was used to
derive the H32f solver in the main paper. Sec. 2 derives
the H51f solver for the [1], . . . , [4] camera configurations
(the [5] camera configuration was studied in the main pa-
per). Sec. 3 provides additional details about the synthetic
experiments from the main paper. In this supplementary
material, we follow the notations and conventions used in
the main paper.

1. Reparameterization of KR
Here, we follow the method proposed in [7] to reparameter-
ize KR. For the sake of brevity, we write RK = KR. We can
split the rotation matrix as R = RθRρ, where Rθ represents
the rotation around the z-axis by an angle θ and Rρ denotes
the rotation around an axis in the x − y plane. Thus, we
have RK = KRθRρ. We can express KRθ as

KRθ =

f 0 0
0 f 0
0 0 1

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


=

f cos θ −f sin θ 0
f sin θ f cos θ 0

0 0 1

 . (1)

Introducing two new variables r1 and r2, we write r1 =
f cos θ and r2 = f sin θ. We have thus reparameterized the
angle θ and the focal length f using r1 and r2. The rotation
matrix Rρ in the x− y plane can be parameterized using the
quaternion [1, r3, r4, 0]. Together, we thus have a repa-
rameterization of RK = KR using four variables r1, r2, r3
and r4.

Apart from this, we also tried other formulations for the
rotation matrix, such as the Cayley parameterization, the
axis-angle representation, Euler angles, etc. But the repa-

rameterization described here was the most helpful in gen-
erating smaller solvers (smaller elimination template size in
the case of Gröbner basis-based methods [5, 6] or Gener-
alized Eigenvalue Problem (GEP) size in the case of the
resultant-based method [1]) by removing symmetry and
halving the number of solutions.

2. H51f

In the main paper, we considered the H51f case for the
camera configuration where all five 2D-2D point correspon-
dences are detected by the same pinhole camera Gi, i.e.,
the [5] camera configuration. Here, we derive solvers for
the remaining camera configurations, i.e., [1], . . . , [4]. Note
that in [3], only the most general configuration [1] for this
case was discussed. Here, we individually studied the spe-
cial configurations, [2], [3] and [4], which allowed us to de-
rive specific solvers with fewer solutions and smaller solver
sizes. The sizes of the proposed solvers for these four cam-
era configurations for the H51f case are provided in the
main paper.

The constraints induced by a 2D-2D point correspon-
dence pj ↔ (qij , tGi

) and a 2D-3D point correspondence
pl ↔ XG

l are given by

R(βijqij + tGi
) + t = αjK

−1pj , (2)
RXG

l + t = αlK
−1pl . (3)

These correspond to Eqs. (4) and (5) in the main paper.
Eliminating the depths βij and αj from Eq. (2), and the
depth αl from Eq. (3), we have

(pj)
> [KRqij ]× (KRtGi

+ Kt) = 0 , (4)

[pl]× (KRXG
l + Kt) = 0 . (5)

For brevity, let us write tK = Kt and RK = KR. Then we



have

p>j [RKqij ]× (RKtGi
+ tK) = 0 , (6)

p>l
[
RKX

G
l

]
× tK = 0 . (7)

Eq. (6) gives us one equation and Eq. (7) gives us two
linearly independent equations in tK and RK. Therefore,
from five 2D-2D point correspondences pj ↔ (qij , tGi

)
for j = 1, . . . , 5 and one 2D-3D point correspondence
pl ↔ XG

l , l = 6, we have a total of seven equations in
seven unknowns, i.e., the elements of the vector tK and the
four-variable reparameterization of RK.

As mentioned in the main paper, we solved this prob-
lem by trying three different parameterizations, i.e., Rota-
tion & translation, Homography and Fundamental matrix.
We attempted the Rotation & translation parameterization,
which corresponds to Eqs. (2) and (3), for all camera con-
figurations. We attempted the Homography parameteriza-
tion for the camera configurations [2], [3] and [4], and the
Fundamental matrix parameterization for the camera con-
figuration [4].

First, we briefly describe the Homography and Funda-
mental matrix parameterizations. For both parameteriza-
tions, we translated the coordinate system of the generalized
camera G such that the center of the camera Gi that detected
the largest number of 2D-2D point correspondences coin-
cides with the origin, i.e., tGi

=
[
0 0 0

]>
.

Homography parameterization: Among the 2D-2D
correspondences detected by the same camera Gi, we se-
lect three 2D-2D correspondences without loss of general-
ity (w.l.o.g.) and consider the scene plane defined by these
three correspondences. This plane allows us to define a ho-
mography H between Gi and the pinhole camera P . Each of
these three 2D-2D correspondences gives us two constraints
on the homography matrix H, i.e., two linearly independent
equations that are linear in the elements of H. These six
equations allow us to parameterize the homography matrix
using a three-dimensional null space. Our approach here is
similar to that of our proposed H13f solver in Sec. 3.1 in
the main paper. We generate the polynomial ideal in the en-
tries of R, t, and N as unknown variables. After eliminating
R, we derive an elimination ideal in HK = KH, t, and N. The
three-variable parameterization of the homography matrix
is then substituted in the generators of this elimination ideal
and also in the constraints induced by the remaining 2D-2D
and the 2D-3D point correspondence. The resulting set of
equations define our minimal solver.

Fundamental matrix parameterization: We use the
constraints induced by the five 2D-2D point correspon-

dences1 detected by the same camera Gi, allowing us to pa-
rameterize the fundamental matrix using a four-dimensional
null space. The fundamental matrix is expressed as

F = λK−1 [t]× R , (8)

where λ ∈ R is an unknown variable. Let the first two
columns of F be f1 and f2. We can express the translation
vector t and the rotation matrix R as

t = λ1K
−1 [f1]× f2 , (9)

R = λ2K
−1([Kt]× F+ Ktv>) , (10)

where v is an unknown 3× 1 vector and λ1, λ2 ∈ R are un-
known scalars. We substitute these expressions for t and R

in the constraints induced by the remaining 2D-2D point
correspondence as well as the second constraint induced
by the 2D-3D point correspondence. These two equations,
along with the determinant constraint on the fundamental
matrix, det F = 0, and the trace constraint on the corre-
sponding essential matrix, 2EE>E − trace(EE>)E = 0, de-
fine the initial polynomial system representing our minimal
solver.

However both these parameterizations lead to large
solver templates and the polynomial systems have more
than four variables. In comparison, the Rotation & transla-
tion parameterization leads to the smallest polynomial sys-
tems in terms of variables and polynomial degree, and thus
the smallest solver size. Out of all the parameterizations we
tested, we thus describe our solver based on the Rotation &
translation parameterization in most detail. In this solver
the first step is to eliminate the vector t from the constraints,
defined by Eqs. (2) and (3).

2.1. [1] camera configuration

Let us first consider the most generic camera configura-
tion [1], where each 2D-2D point is detected by a differ-
ent pinhole camera Gi, with i = 1, . . . , 5. Thus, we have
j = 1, . . . , 5 and i = 1, . . . , 5.
Using the constraint imposed by the 2D-3D point corre-
spondence (Eq. (3)), we express tK = α6p6 − RKX

G
6 and

substitute it in the constraints induced by the 2D-2D point
correspondences. We have five constraints, each of which
is of the same form as Eq. (6). We thus have five equations
in the unknowns α6, r1, r2, r3, and r4. Let us express them
in matrix form as

M6

[
α6

1

]
= 05×2 , (11)

where the matrix M6 is a 5×2 matrix whose entries are poly-
nomials in the unknowns r1, r2, r3, and r4. We compute the

1Note, that the fifth 2D-2D point correspondence is obtained by pro-
jecting the 3D point to the camera Gi.



determinants of each submatrix of size 2 × 2 from M6, re-
sulting in a set of ten polynomials in r1, r2, r3, and r4. Let
us denote this set as E6.

Similarly, we obtain tK = αjpj−βijRKqij−RKtGi
from

the constraint of the form of Eq. (2), induced by the 2D-2D
point correspondence pj ↔ (qij , tGi

). We substitute this
form of tK in the four equations of the form of Eq. (6) for
the remaining four 2D-2D point correspondences and in the
two equations of the form of Eq. (7) for the 2D-3D point
correspondence. We thus have six equations in unknown
variables αj , βij , r1, r2, r3, and r4. We can write them in
matrix form as

Mj

αjβij
1

 = 06×3 , (12)

where the matrix Mj is a 6×3 matrix whose entries are poly-
nomials in the unknown variables r1, r2, r3, and r4. The set
of determinants of all 3× 3 submatrices gives us the set Ej
of 20 polynomials in r1, r2, r3, and r4.

We perform the above step for j = 1, . . . , 5. In each
case, we have matrices Mj which lead to the set of polyno-
mials, Ej , each containing 20 polynomials. The union of
all these sets, E =

⋃6
j=1Ej , denotes the polynomial sys-

tem for our proposed solver. It consists of 110 polynomials
in four variables r1, r2, r3, and r4. However, the ideal gen-
erated by E is non-zero dimensional. We next propose an
approach to introduce extra polynomials in order to saturate
the ideal.

Ideal saturation : Let the columns of the matrix M6 in Eq.
(11) be m1 and m2. We have observed that the last column
m2 vanishes if r3 = 0 & r4 = 0. Therefore, m2 can be
expressed as m2 = r3m

′
2 + r4m

′′
2 . We have

M6

[
α6

1

]
= 0 =⇒

[
m1 m′2 m′′2

] α6

r3
r4

 = 0 . (13)

Let N6 =
[
m1 m′2 m′′2

]
. The determinants of all possi-

ble 3×3 submatrices of N6 lead to a set of ten polynomials in
r1, r2, r3, and r4 which do not vanish for r3 = 0 & r4 = 0.
We augment E with these ten polynomials. By abuse of no-
tation, let us denote the augmented set asE. Note that this is
a rather complicated system, with polynomial degrees from
7 up to 11 in r1, r2, r3, and r4.

Gauss-Jordan elimination: Let us order these polyno-
mials in E in an ascending order of their degree. Let B
be the set of monomials in E. We can construct its vec-
tor form b by ordering the monomials by their degree in
descending order. Thus, we can rewrite E in matrix form
as X b, where the rows of X are indexed by the polynomi-
als and their columns are indexed by the entries in b. We

perform Gauss-Jordan elimination on X, resulting in 45 non-
zero rows. These rows correspond to 45 linearly indepen-
dent polynomials, which define our simplified system. It
consists of polynomials with degrees ranging from 5 up to
11. We generated solvers for this set of 45 polynomials and
also for its subsets. In this way, we observed that the small-
est solver can be generated by using polynomials of degrees
only up to 10. Using Macaulay 2 [2], we verified that this
system has up to 56 solutions2.

Using the Gröbner basis-based automatic generator [5,
6] we obtained a minimal solver from this polynomial sys-
tem whose elimination template is of size 506 × 562 (see
Tab. 1 in the main paper). Using the resultant-based method
[1], we obtained a solver whose GEP is of size 537× 537.

2.2. [2], [3], [4] camera configurations

Our approach for deriving the solvers for the other three
camera configurations, [2], [3] and [4], is similar to the case
of the [1] configuration. For the [2] camera configuration,
our approach remains exactly the same, but the polynomial
system has 50 solutions (see Tab. 1 in the main paper)). But
for the [3] camera configuration, each set Ej , j = 1, . . . , 3,
has one extra polynomial. This is because each matrix
Mj , j = 1, . . . , 3, in Eq. (12) has the form

Mj =


∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 . (14)

We compute the determinant of the 2 × 2 submatrix in the
top-left corner and add it to Ej . This results in 113 polyno-
mials in E instead of 110. The subsequent steps remain the
same, i.e., Gauss-Jordan elimination and selecting a subset
of the polynomials for generating the minimal solver. This
polynomial system has up to 50 solutions.

In the same way, for the [4] configuration, each matrix
Mj , j = 1, . . . , 4, in Eq. (12) has the form

Mj =


∗ ∗ 0
∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 . (15)

In this case, the determinant of the first 3 × 3 submatrix is
zero, but we have determinants of the three 2× 2 submatri-
ces in the top-left corner which we add toEj . This results in

2In contrast, this problem was reported to have 112 solutions in [3].
Thanks to our reparameterization of the matrix RK in Sec. 1, we were able
to halve the number of solutions. This means that the solver has to perform
Eigendecomposition of a matrix of size 56 instead of 112.



118 polynomials in E instead of 110. The subsequent steps
are the same, i.e., Gauss-Jordan elimination and selecting a
subset of the polynomials for generating the minimal solver.
This polynomial system has up to 38 solutions. The sizes
of the proposed solvers for these camera configurations for
the H51f case are provided in the main paper.

3. Synthetic experiments
We provide additional details for the synthetic experiments
presented in the main paper. In the main paper, we showed
the errors in the estimated rotations for three different mo-
tions, i.e., random motion, forward motion, and sideways
motion, in the presence of increasing 3D point noise. For
the same experiments, Row 1 of Fig. 1 and Row 2 of Fig. 1
respectively show the errors in the estimated focal length f
and translation t. For all three motions, in the presence of
increasing 3D point noise, the H51f [5] solver and the pro-
posed H32f and H13f solvers are much more stable than
the SOTA P4Pf absolute pose solver, with the H51f [5]
solver slightly outperforming the H32f and H13f solvers.

Additionally, we also provide details for the synthetic ex-
periment where we varied the image px noise while fixing
the 3D point noise that was mentioned in the paper. We
set the camera motion to be random for this experiment.
We compared the stability of the proposed H32f , H13f ,
and H51f [5] solvers against the SOTA absolute pose solver
P4Pf [4]. We have used exactly the same scene setup as
in the main paper: We tested two scenarios, by fixing the
Gaussian noise in the 3D points at 0.1% and 0.5% of the
scene depth, and for each scenario, varied the amount of
px Gaussian noise in the measured 2D points. In Fig. 1,
we show the errors in the translation vector t, the rotation
matrix R, and the focal length f in Row 3 and Row 4 for
Gaussian noise in 3D points at respectively 0.1% and 0.5%
of the scene depth. As expected, the performance of our
hybrid solvers, which are using also 2D-2D matches, is de-
creasing with increasing image noise. Nevertheless, even
for small levels of noise in 3D point positions (0.1% and
0.5% of the scene depth), which favors the P4Pf solver,
our hybrid solvers still perform competitively compared to
P4Pf .
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Figure 1. Error in focal length (Row 1) and translation (Row 2) in the presence of increasing 3D point noise for random motion (a),
forward motion (b), and sideways motion (c). Error in translation (d,g), rotation (e,h), and focal length (f,i) in the presence of increasing
2D px noise for noise in 3D points set to be 0.1% (Row 3) and 0.5% (Row 4) of the scene depth.
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