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In this supplementary material, we first provide an ab-
lation study of the number of query vectors S2 in Sec. A.
We present the pseudocode of our Exemplar Transformer
Layer in Sec. B. We provide additional results on the
VOT2020 [10] real-time challenge in Sec. C. In Sec. D we
analyze the qualitative results of our tracker on a selection
of sequences, while in Sec. E we further examine the results
of our tracker on the LaSOT dataset [7] with respect to the
specific attributes. Finally, we present the success plots of
the NFS [9], OTB-100 [14], and UAV-123 [12] datasets in
Sec. F. The code and the instructions to reproduce our re-
sults are included in the supplementary material folder, and
will be made available upon publication.

A. Ablation of Number of Query Vectors

As explained in Sec. 3 of the main paper, we set S = 1
in our experiments based on the assumption that one global
token encapsulates sufficient information for the task of sin-
gle object tracking. To further evaluate this hypothesis, we
ablate the parameter S. Specifically, the input feature map
is divided into S × S patches, for which we compute indi-
vidual query vectors. Table S.1 presents the results of our
experiments. The results confirm our assumption that uti-
lizing a single token as global representation yields the best
results.

S=1 S=2 S=4

NFS 59.0 46.6 46.7
OTB-100 67.8 55.5 57.5
LaSOT 59.1 43.7 42.6

Table S.1: Ablation experiment of the different values for S re-
ported in terms of AUC on NFS, OTB, and LaSOT datasets. Uti-
lizing a global query token (S = 1) yields consistently better re-
sults. The best score is highlighted in blue.
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B. Algorithm
We present below the pseudocode for the Exemplar At-

tention layer (Eq. 6) , depicted on the right side of Fig. 2 in
Algorithm 1.

Algorithm 1 Pseudocode of the Exemplar Attention layer,
Eq. 6.
function ExemplarAttention(X):

Q← ΨS(X)WQ Eq. 3
K̂ ← ŴK

V̂ ←WV

sim← softmax(Q · K̂T )
sim← sim/

√
dk

WA = sim · V̂
A(X)←WA ~X

return A(X)
end

C. VOT-RT2020
We evaluate bounding box predicting trackers on

the anchor-based short term tracking dataset of VOT-
RT2020 [10], similar to Sec. 4.2. The results are presented
in Table S.2. While the performance of our model is compa-
rable to LT-Mobile [16] in terms of accuracy, our model is
nearly 6% better in terms of robustness. We find that learn-
ing exemplar representations from the dataset coupled with
an image-level query representation significantly increases
the tracker’s robustness compared to its convolutional coun-
terpart.

D. Video Visualizations
We additionally provide sequence comparisons between

E.T.Track and LT-Mobile [16]. Table S.3 lists the sequences
compared, and reports their performance. In addition, the
associated videos can be found in the supplementary folder.

person8-2 The person8-2 sequence of the UAV-123



non-realtime realtime

SiamFC ATOM DiMP SuperDiMP KCF LT-Mobile E.T.Track
[2] [5] [3] [1] [8] [16] (Ours)

EAO 0.172 0.237 0.241 0.289 0.154 0.217 0.227
Accuracy 0.422 0.440 0.434 0.472 0.406 0.418 0.418

Robustness 0.479 0.687 0.700 0.767 0.434 0.607 0.663

CPU Speed 6 20 15 15 95 47 47

Table S.2: Comparison of bounding box predicting trackers on the VOT-RT2020 dataset. We report the Expected Average Overlap (EAO),
the Accuracy and Robustness. The best score is highlighted in blue while the best realtime score is highlighted in red. We additionally
report CPU runtime speeds in FPS.

dataset [12] of a man running on grass nicely demonstrates
that our tracker does not lose track of the target even when
he partially moves out of the frame. Specifically, E.T.Track
is able to completely recover when the target moves back
into the frame. LT-Mobile [16] yields comparable results.

Human7 Human7 from the OTB dataset [14] films a
woman walking. Even though the video appears to be jit-
tery, the appearance and shape of the target object changes
only marginally. Our model achieves an average overlap of
88% which is 7% higher than LT-Mobile [16].

boat-9 The boat-9 from the UAV-123 dataset [12] depicts a
target which not only changes appearance, but also signifi-
cantly decreases in size due to an increasing distance to the
camera. We find that E.T.Track can still handle such sce-
narios, and unlike LT-Mobile, it maintains track of the boat
even after a 180-degree turn. E.T.Track is therefore more
robust than LT-Mobile, attributed to the increased capacity
introduced by the Exemplar Transformer layers.

basketball-3 In the basketball-3 sequence of NFS [9], the
increased robustness introduced by the Exemplar Trans-
former layer enables the separation between the player’s
head and the basketball, unlike LT-Mobile.

drone-2 The drone-2 sequence of LaSOT [7] shows a tar-
get that shortly moves completely out of the frame, and later
re-enters the scene with a different appearance to the ini-
tial frame. Furthermore, the target object’s location devi-
ates from the tracker’s search range when re-entering the
scene. These two aspects pose a challenge both for our
model, as well as LT-Mobile [16], and are inherent limi-
tations of the tracking inference pipeline used in both ap-
proaches [17]. Specifically, the tracking pipeline contains a
post-processing step in which the predicted bounding boxes
are refined. Changes in size, as well as changes of the
bounding box aspect ratios, are therefore penalized. In ad-
dition, both models search only within a small image patch
around the previously predicted target location. This chal-
lenge can potentially be addressed by integrating our Ex-
emplar Transformer layer into trackers that directly predicts

Dataset LT-Mobile E.T.Track
[16] (Ours)

person8-2 UAV-123 [12] 0.889 0.915
Human7 OTB [14] 0.813 0.883
boat-9 UAV-123 [12] 0.483 0.803
basketball-3 NFS [9] 0.259 0.707
drone-2 LaSOT [7] 0.192 0.887

Table S.3: Direct per-sequence comparison of E.T.Track and LT-
Mobile [16] on various sequences in terms of Average Overlap
(AO). The best performance is highlighted in blue.

bounding boxes without any post-processing. We did not
investigate this further, but consider this an interesting di-
rection for future research.

E. Attributes

Table S.4 presents the results of various trackers on dif-
ferent sequence attributes of the LaSOT dataset [7]. We
consistently outperform the other realtime trackers by a sig-
nificant margin in every attribute. The attribute with the
largest performance gains compared to LT-Mobile [16] are
Full Occlusion with 10.4%, Motion Blur with 9.7%, Back-
ground Clutter with 8.5%, and Fast Motion with 7.5%.
These attributes are either known limitation of the tracking
pipeline utilized [17], as discussed in Sec. D, or can benefit
from increased network capacity. We find that the incorpo-
ration of our Exemplar Transformer layers increases robust-
ness and improves attributes that are even known limitations
of the overall framework.

When comparing our model to the non-realtime state-of-
the-art STARK [15], our model observes an average per-
formance drop of −7.3%. The most challenging attributes
are Viewpoint Change, Full Occlusion, Fast Motion, Out-of-
View, and Low Resolution. This analysis paves the path for
future research in the design of novel modules for efficient
tracking, specifically tackling the identified challenging at-
tributes.



Illumination Partial Motion Camera Background Viewpoint Scale Full Fast Low Aspect
Variation Occlusion Deformation Blur Motion Rotation Clutter Change Variation Occlusion Motion Out-of-View Resolution Ration Change Total

STARK-ST50 66.8 64.3 66.9 62.9 69.0 66.1 57.3 67.8 66.1 58.7 53.8 62.1 59.4 64.9 66.4
TransT 65.2 62.0 67.0 63.0 67.2 64.3 57.9 61.7 64.6 55.3 51.0 58.2 56.4 63.2 64.9
TrDiMP 67.5 61.1 64.4 62.4 68.1 62.4 58.9 62.8 63.4 56.4 53.0 60.7 58.1 62.3 63.9
TrSiam 63.8 60.1 63.8 61.1 65.5 62.0 55.1 60.8 62.5 54.5 50.6 58.9 56.0 61.2 62.6
PrDiMP50 63.3 57.1 61.3 58.0 64.0 59.1 55.4 61.7 60.1 51.6 49.2 57.0 54.8 59.0 60.5
DiMP 59.5 52.1 56.6 54.6 59.3 54.5 49.7 56.7 55.8 47.5 45.6 49.5 49.1 54.5 56.0
SiamRPN++ 53.0 46.6 52.8 44.2 51.3 48.5 44.9 44.4 49.4 36.6 31.6 41.6 38.5 47.2 49.5
LT-Mobile 55.0 48.9 57.3 45.8 52.9 51.2 43.3 49.9 51.9 38.3 33.6 43.7 40.8 49.9 52.1
SiamFC 34.6 30.6 35.1 30.8 33.3 31.0 30.8 28.6 33.2 24.5 19.5 25.6 25.2 30.8 33.6
E.T.Track (Ours) 61.3 55.7 61.0 55.5 60.2 58.1 51.8 55.9 58.8 48.7 41.1 51.1 48.8 56.9 59.1

Table S.4: LaSOT attribute-based analysis. Each column corresponds to the results computed on all sequences in the dataset with the
corresponding attribute. The trackers that do not run in real-time are highlighted in grey. The overall best score is highlighted in blue while
the best realtime score is highlighted in red.
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(a) Success plot on the NFS dataset. Our
tracker outperforms LT-Mobile [16] by a sig-
nificant margin.
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(b) Success plot on the OTB-100 dataset. Our
tracker outperforms LT-Mobile [16] by a small
margin.
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(c) Success plot on the UAV-123 dataset. The
performance of our tracker is comparable to
the performance of LT-Mobile [16].

Figure S.1: Success plots. The CPU realtime trackers are indicated by continuous lines in warmer colours, while the non-realtime trackers
are indicated by dashed lines in colder colours.

F. Additional Success Plots

We depict the success plot of the NFS dataset [9] in
Fig. S.1a, the success plot of the OTB-100 dataset [14] in
Fig. S.1b and the success plot of the UAV-123 dataset [12]
in Fig. S.1c. For efficient trackers, we limited our compari-
son to the mobile architecture presented in LightTrack [16],
as SiamRPN++ [11] and SiamFC [2] were consistently
outperformed by a large margin. We additionally re-
port the non-realtime transformer-based trackers STARK-
ST50 [15], TrDimp [13], TrSiam [13] and TransT [4], as
well as the seminal trackers DiMP [3] and PrDiMP [6].

The results presented in Fig. S.1 correspond to our eval-
uation results, and therefore deviate slightly from those re-
ported in Sec. 4.2 as those were directly acquired from their
respective papers. As it can be seen, our model outperforms
LT-Mobile [16] on all but one benchmark dataset. More im-
portantly, we want to highlight the shrinking gap between
the complex transformer-based trackers and our realtime
CPU tracker. Closing this gap even further while main-
taining the realtime speed will be a crucial part for future

work in order to deploy high-performing trackers on com-
putationally limited edge devices.
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