
Appendices
A. Introduction

As part of the supplementary materials for this paper, we present our hyper-parameters and show more visual and quanti-
tative results as an extension to the ones shown in the paper. The supplementary materials contain:

• An ablation study analyzing the performance of X-Align on various backbones.

• An ablation study to measure the adaptability of X-Align to camera noise.

• An ablation study to measure the impact of X-Align on different driving conditions and its adaptability to noise.

• Implementation details and training hyper-parameters for all our experiments.

• Qualitative results on nuScenes as an addition to the example shown in Figure 5 of the paper, and visual comparison
with the baseline network.

B. Varying Backbones

Model Encoder Modality mIoU

BEVFusion [9] Swin-T Camera, LiDAR 62.7
X-Alignview Swin-T Camera, LiDAR 64.1
BEVFusion ConvneXt-T Camera, LiDAR 62.1
X-Alignview ConvneXt-T Camera, LiDAR 63.8
BEVFusion ConvneXt-S Camera, LiDAR 63.9
X-Alignview ConvneXt-S Camera, LiDAR 64.7

Table B.1: Quantitative evaluation on nuScenes in terms of mIoU, varying the camera encoder.

To verify the generalizability of our X-Align method, we present results for three different encoders, i.e., SWin-T,
ConvneXt-T, and ConvneXt-S, in Table B.1. For this ablation study, we choose our X-Alignview variant because this shows
that a given model can be improved without adding additional computational complexity during inference. Compared to the
current state-of-the-art result from BEVFusion [9], we can improve their result from 62.7 to 64.1 in terms of mIoU. Similar
improvements can be observed for our additionally investigated backbones ConvneXt-T and ConvneXt-S. These results show
that our method generalizes well to different backbones without hyperparameter tuning.

C. Adaptability to Noise

Model Encoder Modality σ = 0.0 σ = 0.05 σ = 0.075 σ = 0.1

BEVFusion [9] Swin-T Camera 56.6 52.7 47.2 40.7
X-Alignview Swin-T Camera 58.0 55.2 51.4 45.6
BEVFusion [9] Swin-T Camera, Lidar 62.7 59.2 54.8 48.9
X-Alignview Swin-T Camera, Lidar 64.1 62.1 58.3 54.1
X-Alignall Swin-T Camera, Lidar 65.7 64.3 62.6 59.6

Table C.1: Quantitative evaluation on nuScenes, adding gaussian noise to the input images. We observe that X-Align
methods provide more consistent results as they are lesser variant to noise.

Another interesting property of deep neural network-based methods is their susceptibility to input perturbations because
it gives insights into their robustness in real environments. Therefore, we add Gaussian noise to the input camera images and
observe how the performance degrades in Table C.1. The noise is zero-mean normalized, and σ in Table C.1 is the standard
deviation of the Gaussian noise. From the table, we can deduce two main observations: First, the performance of X-Align
methods under input perturbations is relatively stable compared to the baseline. We attribute this to the fact that the input



camera noise will make the extracted camera feature less reliable. Due to our robust attention-based cross-modal feature
fusion (X-FF), the method can still correct the camera features using LiDAR predictions. Our second interesting observation
concerns the comparison to the baseline BEVFusion. We observe that our performance loss at a higher noise-variance is
much smaller than for BEVFusion, e.g., the performance of our method X-Alignall at σ = 0.1 drops from 65.7 to 59.6. In
contrast, BEVFusion drops from 62.7 to 48.9. This shows superior properties of our method in terms of robustness.

D. Adverse Weather Conditions

Model Encoder Modality nuScenes-Night nuScenes-Rain nuScenes

BEVFusion [9] Swin-T Camera 30.8 50.5 56.6
X-Alignview Swin-T Camera 33.1 51.1 58.0
BEVFusion [9] Swin-T Camera, LiDAR 43.6 55.9 62.7
X-Alignview Swin-T Camera, LiDAR 44.5 56.3 64.3
X-Alignall Swin-T Camera, LiDAR 46.1 57.8 65.7

Table D.1: Quantitative evaluation on nuScenes-rainy and nuScenes-night. We observe that X-Align provides consistent
improvements in adverse weather conditions.

To further investigate our method’s robustness, we show results of how our method performs in adverse weather condi-
tions in Table D.1. For this experiment, we use the metadata provided by nuScenes, which indicates the weather and light
conditions of the recorded scene. With this information, we filter the validation set to obtain two splits containing all images
recorded at night and all images recorded during rainy conditions. Our results show consistent improvement in these adverse
conditions by X-Alignview as well as X-Alignall. This shows that our method improves on comparably easy samples and
difficult ones, which is an important property for future deployment of our method.

E. Training Details and Hyperparameter Analysis
In this subsection, we provide the hyper-parameters and training details for all our experiments in the paper. All our

models are trained using Pytorch [11] on 4 Nvidia Tesla A100 GPUs.
nuScenes experiments: To reproduce the BEVFusion [9] baseline model, we adapt the code provided by their authors1

into the mmdetection3d [3] framework. This is because they do not provide training code in the current version. In the
camera pipeline, the images are downsampled into a size of 256 × 704 before being passed through a Swin-T [7] or Con-
vNext [8] backbone pretrained on ImageNet [13]. The intermediate features extracted from the camera are passed through
a set of FPN [6] layers to retain the salient low-level encoder features. These are then passed to View-Transformers based
on LSS [12]. The baseline is trained using their reported hyper-parameters [9], with a learning schedule of 20 epochs and a
cyclic learning rate, starting for 1e−4 and performing a single cycle with target ratios {10, 1e−4} and a step of 0.4. For our
experiments, we implement our proposed blocks:

• X-FF Modules: For the X-FF modules described in Section 3.3 of the paper, we switch the naive convolutional fuser
in the baseline model. To implement the Self-Attention fuser, we tokenize the inputs into patches of size 3 × 3 and a
stride of 2. This step is followed by a Multi-Head-Self-Attention block as described in [15], containing 8 heads and an
embedding dimension of 256. To implement the Spatial-Channel Attention module, we use the Split-depth Transpose
Attention (SDTA) block from EdgeNext [10].We use an embedding dimension of 256, 2 scales, and 8 heads. We also
use DropPath [5] of 0.1. A deconvolution block follows the SDTA fusion module to output 256 channels and the fused
feature resolution. Finally, to implement the pose-driven deformable convolutional operation, we pass the input pose
through a 2-layer MLP network, whose output can is interpolated to the feature size. This pose channel is concatenated
with the two input modalities, then passes through a convolutional block to obtain 18 offset channels, input into a
DCNv2 [17] block of kernel size 3× 3 The output of the DCNv2 block is our fused feature dimension.

• X-FA Loss: As explained in Section 3.4 of the paper, we use cosine similarity as a loss function to model the X-FA
similarity. Using a sparse hyper-parameter search, we set the best value of γ2 in Equation (2) of the main paper as
−0.002. We reduce its negative value because we want to increase the cosine similarity.

1https://github.com/mit-han-lab/bevfusion

https://github.com/mit-han-lab/bevfusion


• X-SA Module: As explained in Section 3.5 of the paper, we utilize a perspective decoder to generate 2D perspective
view semantic labels. The decoder has two Convolution-BN2D-ReLU sequences with a hidden dimension of 256
channels, generating semantic probabilities at the output. As nuScenes [2] does not contain ground truth segmentation
labels; we make use of a state-of-the-art (SOTA) model pre-trained on Cityscapes to generate pseudo labels yPV.
This is an HRNet-w48 [16] checkpoint, trained with the InverseForm [1] loss, as made public by the authors in their
codebase.2 We pick γ3 in Equation (2) of the main paper as 0.1 following a sparse hyper-parameter search. Once we
have the 2D perspective features, we share parameters with the LSS Transform from earlier to splat the probability
maps to BEV space. We use convolution blocks for channel aggregation at the input and output and interpolate to
equalize dimensions. The output is then supervised with BEV GT as shown in Figure 3 of the paper. The loss weight
γ4 is tuned to 0.1 by observing the total loss value and setting the weight to produce ∼20% of the total loss.

KITTI360 experiments: To reproduce the PanopticBEV [4] scores, we use the code made public by the authors and their
default settings.3 The model consists of an EfficientDet-d3 [14] camera encoder, which encodes multi-resolution features.
Next, a multi-scale transformer converts the perspective view to BEV features. This is followed by decoders for both instance
and semantics. Finally, their outputs are combined to generate panoptic predictions. The baseline uploaded by the authors
reaches a lower value than what was obtained in their paper. For our experiments with the X-SA module, we added a 2D
Perspective decoder to the multi-scale encoded features to predict semantic labels in the perspective view. As KITTI360
contains 2d semantic labels, we use them to supervise this decoder. Then, we reuse the view transformer to map predictions
to BEV space. We supervise our X-SA branch with loss weights γ3 set at 0.5 and γ4 set at 0.1, adding them to the total loss
of the PanopticBEV baseline.

F. Qualitative Analysis
In this Section, we present more sample scenes from nuScenes, as an extension to the one shown in Figure 5 of the main

paper. Each scene consists of 5 parts: a) six surround camera inputs b) LiDAR scan, c) ground-truth BEV segmentation
map, d) baseline BEV segmentation, e) BEV segmentation using X-Alignview, and d) BEV segmentation X-Alignall. For
each scenario, we observe that the baseline model prediction is highly erroneous in the region highlighted in green. We
highlight this region of interest in the input views as well. By using our proposed X-SA losses, X-Alignview can already
correct substantial errors in the baseline prediction, and the X-Alignall model further improves accuracy.

Figure F.1: Scenario 1 on nuScenes: We present a scene where multiple road occlusions are apparent in the N and NW camera images,
which were caused by pedestrians. The baseline model fails to fill in the gaps properly through the LiDAR-camera fusion, producing an
entangled segmentation representation of the intersecting roads. Using the two X-SA losses, X-Alignview improves the segmentation map’s
prediction. By adding all the components, X-Alignall can address the occlusions and produce a more refined semantic representation of the
scene.

2https://github.com/Qualcomm-AI-research/InverseForm
3https://github.com/robot-learning-freiburg/PanopticBEV

https://github.com/Qualcomm-AI-research/InverseForm
https://github.com/robot-learning-freiburg/PanopticBEV


Figure F.2: Scenario 2 on nuScenes: In this scene from nuScenes, the road boundaries in the north west direction of the vehicle appear
vague in the LiDAR point cloud’s green box area. However, in the N and NW camera images, they are apparent. The baseline model’s
boundary prediction is faulty due to misaligned camera features. Using the two X-SA losses, X-Alignview rectifies some of the camera
features. By adding all the components, X-Alignall can predict a map where the road boundaries are properly segmented.

Figure F.3: Scenario 3 on nuScenes: We present a scene where patterned occlusions like fences are evident in the N and NW camera
images. Due to these repetitive occlusions, the baseline model has difficulty producing a clear segmentation map of the intersection.
By using the two X-SA losses, X-Alignview can extract more BEV-segmentation-oriented features from the images. By adding all the
components, X-Alignall can properly rectify the camera’s incomplete view of the road and align it properly with the LiDAR’s features,
producing a clear segmentation map of the road as shown in (f).



Figure F.4: Scenario 4 on nuScenes: We present a scene from nuScenes, where the back intersection is dimly lighted with slightly occluded
road boundaries, as shown in the S camera image. The LiDAR point cloud input lacks salient features capturing the road boundaries. We
show the baseline’s erroneous boundary prediction due to their simple concatenation-based fusion between the two modalities. We also
show that by using two X-SA losses, X-Alignview can have a more accurate prediction of the road boundaries, and by additionally using
X-FF and X-FA, X-Alignall can output an accurate segmentation map of the intersection.
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