
Supplementary Material: CYBORG: Blending Human Saliency Into the Loss
Improves Deep Learning-Based Synthetic Face Detection

1. Online Annotation Tool
Fig. 1 shows a screenshot from the tool used to col-

lect the human annotation data, as described in Section 4 of
the main paper. An example pair of face images is shown,
where the right image is fake. The subject classifying this
particular pair of images answered the prompt question cor-
rectly by picking the right image as being fake. Green high-
lights correspond to “salient” regions annotated by the user
as to which part(s) of the image led to their classification
decision.

2. Datasets
We will release all data collected for this work with the

camera-ready submission, along with a standard data shar-
ing license agreement (human annotations were collected
under IRB protocol). The data shared with the camera-
ready paper will allow for replicating all experiments pre-
sented in the paper. Some test sets used in this work are al-
ready in the public domain, and their copies can be obtained
by following the references provided in the main paper. The
data can be used to run the testing codes after performing
image pre-processing as described in the main paper.

3. Source Codes
Example source codes demonstrating how CYBORG

loss was implemented are available in code.zip. This in-
cludes the training and testing code used to compute the
results in the paper, along with one example DenseNet121
model that was trained with CYBORG loss. The full suite
of pretrained models used for the generation of the pa-
per results will be released with the camera-ready submis-
sion. The Xception network code can be downloaded from
https://github.com/ondyari/FaceForensi
cs/tree/master/classification; the other three
architectures can be used natively with PyTorch.

4. Deep Learning-Based Face Segmentation
Examples of the output from the deep learning-based

face segmentation tool [11] can be found in Fig. 2. The top
row shows three examples of real (genuine) face images as

well as their corresponding face segmentations. The bottom
rows show three examples of synthetic (fake) face images
as well as their corresponding face segmentations. The first
two synthetic images shown are from the SREFI dataset [1])
and the third image is generated by StyleGAN2 [6].

5. Supplementary Experimental Results
(Sec. 7 in the main paper)

5.1. Tabulated AUCs, Training/Validation Plots,
and ROC Curves

Tab. 1 outlines the individual performances of each of
the studied approaches on the individual GAN sources; this
supplements the plots for all GANs combined, as presented
in the main paper.

Figures 3-6 outline the training and validation accuracy
during the training processes for all four out-of-the-box ar-
chitectures studied in this work.

Figures 8-11 show the Receiver Operating Characteris-
tics (ROC) curves for the results from Tab. 1 for all four
out-of-the-box architectures. The AUCs from Tab. 1 can be
found in the legends of the associated ROC plots.

5.2. Visualization of Model Output CAMs

Detailed here are the model visualizations for all stud-
ied architectures. In the manuscript Fig. 7 only ResNet is
shown but here all four networks are displayed. This Fig. 7
in this supplementary materials complements Fig. 7 in the
paper.

By direct comparison to the average correct human anno-
tation in Fig. 7(e), the models trained with CYBORG focus
on features that are more similar to human detailed salient
regions than models trained with classical cross-entropy
loss in all cases. Thus, it can be concluded these models
are effectively guided by the human annotations supplied
during the training process.

5.3. Evaluating an Off-the-shelf Deepfake Detector
on Test Data

While deepfake technology manipulates real videos by
inter-splicing real identities, GAN-generated images are en-
tirely synthetic. Given the slight difference between the



two, we wanted to inspect whether or not existing deepfake
detection methods can be applied to our task of synthetic
image detection. To verify, we ran a state-of-the-art deep-
fake detector [2] on our test set of synthetic images.

Prior to evaluating the deepfake models on our test im-
ages, model use and accuracy were validated for the ten pre-
trained models on their respective test sets: DFDC [4] and
FFPP [7]. Figure 12 shows the results from the authors’
self-reported best ensemble deepfake detection method. On
their own DFDC and FF++ deepfake test data, the [2] en-
semble methods show AUCs of 0.95789 and 0.92047, re-
spectively.

However, when applied in the different domain of syn-
thetic image detection (on our synthetic test data), the en-
sembles of pretrained models are not able to adequately dis-
tinguish between real and entirely synthetic images, as seen
in Figure 13; the DFDC ensemble method shows an AUC of
0.373 while the FFPP ensemble method shows an AUC of
0.385. These results support the claim that deepfake detec-
tion models and synthetic image detection models are not
interchangeable.

5.4. Incorporation Of CYBORG Into An Existing
Synthetic Face Detector

In [8], Wang et al. design a synthesizer-agnostic classi-
fier of CNN-generated images. To test model generalizabil-
ity on novel synthesizers, Wang et al. trained their model
exclusively on ProGAN-generated images. They then tested
their model on “never-before-seen” GAN-generated images
from StyleGAN [5], CycleGAN [10], and other state-of-
the-art methods.

To determine whether the incorporation of CYBORG
loss would improve upon this existing method, we con-
ducted experiments under the training scenarios and test-
ing protocols described in the main paper (Sec. 6.1),
adding CYBORG loss to Wang et al.’s publicly available,
re-trainable model [9].

Results (based on the same testing scenarios) can be
found in the “CNNDetection” row in Tab. 1, with ROCs
for the individual GAN sources in Fig. 14. As can be seen,
there is an increase in performance, although relatively min-
imal compared to that of other models.

5.5. Incorporation Of Human Saliency Into An At-
tention Mechanism.

A popular approach to force networks to focus on spec-
ified regions is self-attention. In [3], the authors propose a
method of self-attention to give extra context to deepfake
detection models via image masks. The masks in this ap-
proach signal broad areas of “tampered” information, in-
structing the model where the image alteration has been per-
formed during training. However, attention maps are much
coarser as they only provide binary information (tampered

/ not tampered). Additionally, attention maps are not based
on human judgment, but are instead bona-fide ground truth
maps of modified regions within an image.

Although not the main goal of this work, we investigate
whether the replacement of the masks proposed in [3] with
our human saliency maps results in higher accuracy. Be-
cause our work focuses on detecting synthetically gener-
ated images as a whole, rather than tampered images, real
image masks are all zeros and synthetically-generated im-
age masks are all ones, as described in [3]. We train two
models in this case: (1) using the original approach with no
human saliency, and (2) using our human saliency maps as
the masks for real and synthetic images. In both cases, the
parameters proposed by the authors are used. The goal of
this evaluation is to see whether addition of a self-attention
module and human saliency information can also provide a
boost in generalization. The “Self-Attention” rows in Tab.
1 illustrate that the replacement of the ground truth masks
used in [3] with our human saliency maps increased per-
formance. ROCs on individual GAN sources can also be
found in Fig. 15. Since GAN-generated images are en-
tirely synthetic, ground truth data regarding synthetic re-
gions within an image typically does not exist. Tab. 1
suggests that implanting human saliency maps into the self-
attention module narrows the model’s search for areas of
importance (even in the absence of ground truth) and boosts
performance.
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Figure 1: A screenshot from the online annotation tool designed for this work and used to collect human annotation data.



Real Images

Synethtic Images

Figure 2: Three examples of real images and corresponding deep learning-based segmentations (top two rows) and three
examples of synthetic images and corresponding deep learning-based segmentations (bottom two rows). Bottom two rows:
image 1 and 2 from SREFI dataset, image 3 generated by StyleGAN2.
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Figure 3: Training / validation accuracy: DenseNet121. “Only classification loss” corresponds to Scenario 1 (“Classical
Training”), and “CYBORG” corresponds to Scenario 3, as defined in Sec. 6.1 in the main paper.
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Figure 4: Same as in Fig. 3, but for ResNet50
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Figure 5: Same as in Fig. 3, but for Inception-v3
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Figure 6: Same as in Fig. 3, but for Xception Net
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(a) DenseNet-121

AUC: 0.585 ± 0.04
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(b) ResNet50
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(c) Inception-v3

AUC: 0.691 ± 0.02

AUC: 0.730 ± 0.02

AUC: 0.581 ± 0.01

(d) Xception

(e) Average Correct Human Annota-
tion

Figure 7: Average CAMs across the entire test set for 10 independently trained models in three experimental settings and
four different architectures.



Table 1: Area Under Curve (AUC) with ± one standard deviation (over 10 independent runs of the training-validation experiments) for all combinations of
classification models (rows), synthetic face generative models (table section headers) and training strategies (Scenario 1: Classical with cross-entropy loss only;
Scenario 2: Classical with Large Data and cross-entropy loss only; Scenario 3: CYBORG – the proposed approach penalizing both the divergence of the model
from human saliency and classification performance). Best average AUCs among all scenarios are bold and color-coded: blue for Classical (Scenario 1), green
for Classical with Large Data (Scenario 2), and orange for CYBORG (Scenario 3). We can see that in majority of cases, the CYBORG approach results in
higher AUCs in a task of recognition of synthetic faces generated by unknown GAN models.

ProGAN StyleGAN StyleGAN2

Classical CYBORG Classical – Classical CYBORG Classical – Classical CYBORG Classical –
Large Data Large Data Large Data

DenseNet121 0.580 ± 0.04 0.702 ± 0.04 0.601 ± 0.03 0.563 ± 0.04 0.645 ± 0.03 0.629 ± 0.05 0.529 ± 0.07 0.704 ± 0.06 0.716 ± 0.05
ResNet50 0.554 ± 0.06 0.668 ± 0.04 0.599 ± 0.03 0.561 ± 0.09 0.629 ± 0.04 0.611 ± 0.05 0.556 ± 0.14 0.664 ± 0.06 0.690 ± 0.07

Inception v3 0.595 ± 0.07 0.785 ± 0.04 0.575 ± 0.03 0.604 ± 0.05 0.692 ± 0.05 0.584 ± 0.04 0.630 ± 0.08 0.801 ± 0.06 0.697 ± 0.05
Xception Net 0.740 ± 0.03 0.725 ± 0.02 0.616 ± 0.02 0.704 ± 0.02 0.754 ± 0.02 0.586 ± 0.02 0.826 ± 0.03 0.873 ± 0.03 0.710 ± 0.02

CNN Det. 0.521 ± 0.04 0.525 ± 0.03 0.461 ± 0.04 0.583 ± 0.02 0.618 ± 0.03 0.568 ± 0.04 0.580 ± 0.05 0.634 ± 0.06 0.570 ± 0.06
Self-Attention 0.483 ± 0.02 0.489 ± 0.04 0.500 ± 0.03 0.483 ± 0.02 0.531 ± 0.04 0.559 ± 0.04 0.377 ± 0.07 0.519 ± 0.09 0.521 ± 0.10
Deepfake Det.

StyleGAN2-ADA StyleGAN3 StarGANv2

Classical CYBORG Classical – Classical CYBORG Classical – Classical CYBORG Classical –
Large Data Large Data Large Data

DenseNet121 0.528 ± 0.07 0.705 ± 0.06 0.714 ± 0.05 0.489 ± 0.08 0.614 ± 0.06 0.581 ± 0.05 0.403 ± 0.05 0.513 ± 0.07 0.358 ± 0.07
ResNet50 0.552 ± 0.14 0.665 ± 0.07 0.681 ± 0.06 0.520 ± 0.12 0.594 ± 0.07 0.573 ± 0.06 0.520 ± 0.10 0.511 ± 0.07 0.372 ± 0.07

Inception v3 0.631 ± 0.08 0.808 ± 0.05 0.697 ± 0.06 0.557 ± 0.07 0.701 ± 0.10 0.546 ± 0.04 0.468 ± 0.13 0.468 ± 0.07 0.305 ± 0.05
Xception Net 0.818 ± 0.03 0.868 ± 0.03 0.699 ± 0.03 0.701 ± 0.03 0.771 ± 0.03 0.500 ± 0.03 0.431 ± 0.05 0.473 ± 0.02 0.366 ± 0.04

CNN Det. 0.576 ± 0.05 0.632 ± 0.06 0.566 ± 0.06 0.523 ± 0.04 0.578 ± 0.06 0.522 ± 0.06 0.525 ± 0.06 0.555 ± 0.03 0.552 ± 0.08
Self-Attention 0.376 ± 0.07 0.518 ± 0.09 0.521 ± 0.10 0.409 ± 0.06 0.522 ± 0.09 0.516 ± 0.10 0.434 ± 0.04 0.418 ± 0.07 0.388 ± 0.08
Deepfake Det.
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Figure 8: ROC curves associated with results shown in Tab. 1. Classification model: DenseNet121. “Only classification
loss” corresponds to Scenario 1 (“Classical Training”), “Trained with 7x Dataset” corresponds to Scenario 2 (“Classical –
Large Data”), and “CYBORG” corresponds to Scenario 3, as defined in Sec. 6.1 in the main paper.
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Figure 9: Same as in Fig. 8, except for classification model: ResNet50
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Figure 10: Same as in Fig. 8, except for classification model: Inception-v3
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Figure 11: Same as in Fig. 8, except for classification model: Xception Net
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Figure 12: Best reported ensemble method among off-the-shelf deepfake detector models when applied to the original
authors’ respective DFDC and FF++ deepfake test data. As in the original paper, this deepfake detector performs very well
on deepfake samples.

(a) DFDC (b) FF++

Figure 13: Best reported ensemble method among off-the-shelf deepfake detector models when applied to our synthetic face
test data. As it can be seen, the method designed for deep fakes detection is not able to detect synthetically-generated faces.
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Figure 14: Same as in Fig. 8, except for classification model: CNNDetection
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Figure 15: Same as in Fig. 8, except for classification model: Self-attention
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