
Supplementary: Wiener Guided DIP for Unsupervised Blind Image
Deconvolution

Gustav Bredell1 Ertunc Erdil1 Bruno Weber2 Ender Konukoglu1

1Computer Vision Laboratory, ETH Zürich 2University of Zürich
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1. Overview of Supplementary

In this supplementary we will show a visual example of
the SSIM favoring over-smoothed images and we will pro-
vide a more in depth explanation regarding the kernel shift
during optimization as well as for our hyper-parameter tun-
ing. Furthermore, the microscopy dataset will be introduced
with visual examples. In addition, we will provide qual-
itative examples for non-uniform blur [3] and for all five
datasets that were introduced in the main article namely,
Levin et al. [5], Lai et al. [4], the generated microscopy
dataset, Sun et al. [10] and on real-world images [4]. Lastly,
we also include two more visual examples of the high fre-
quency artifact suppression by DIP.

2. SSIM favoring over-smoothed images

As pointed out in the main text, the SSIM metric tends
to provide higher scores to images that are visually over-
smoothed and could be an explanation why W-DIP had a
lower score for the SSIM metric, compared to other base-
line methods such as Pan et al. [6]. In Fig. 1 an image
that was deblurred with W-DIP and Pan et al. [6], respec-
tively, is compared. It can be seen that especially objects
with many fine details, such as the pullover of the child, are
over-smoothed by Pan et al. [6].

Pan et al. [6], SSIM:0.9350 W-DIP, SSIM:0.9180

Figure 1: Visual example of SSIM favoring over-smoothing of im-
age on Levin et al. [5] dataset

3. Kernel Shift

As we mentioned in the main article, k and gϕ(zk) could
represent the same kernel, but a shifted version to each
other. In such cases, the kernel matching term weighted
by β in Eq. (6) in the main article produces large loss due
to translation between the kernels. During optimization, we
shift the auxiliary kernel k with regard to the generated ker-
nel gϕ to prevent inducing a loss for shifted kernels as can
be seen in Fig. 2. The shift is performed by first padding
k with zeros on each side equal to half of the estimated
kernel size. As a next step, patches with stride equal to
one and with a patch size equal to estimated kernel size is
extracted from the padded k. The patch is then selected,
which has the lowest summed squared error with the gen-
erated kernel, gϕ. Based on the shift of the selected patch
to the generated kernel the deconvolved image W (IB , k) is
then also shifted with regard to the generated image fθ(zI)
by an equal amount.

4. Microscopy Dataset

The microscopy dataset is composed of four sharp im-
ages and four kernels as can be seen in Fig. 3. The images
were generated by Schneider et al. [9] and four 2D slices
were selected from the 3D volume and were cropped to
255×255. The selected images are displayed in the top row
of Fig. 3. These sharp images were then blurred with one
kernel form Levin et al. [5] (left-side) and 3 generated ker-
nels shown in the bottom row of Fig. 3. The size of the ker-
nels range between 13×13 to 41×41 and were chosen to be
in the range of point spread function sizes expected in two-
photon microscopy [1]. The shown kernels are the “bad”
kernel size estimates, as can be seen by the large zero space
around each kernel, especially kernel 3. The full dataset
including the blurred images can be found in the provided
data.
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Figure 2: Visual example showing how the auxiliary kernel and generated kernel can be shifted to each other and how the shift is corrected
for the kernel as well as the generated image. Note that in the process of shifting the image, the images needs to be cropped to allow space
for shift.

5. Qualitative Results Microscopy Dataset
As mentioned in the main paper, we observed a perfor-

mance fluctuation for neural blind deconvolution without
Wiener-guidance [8] if the kernel size estimate was changed
for the microscopy dataset. This is shown qualitatively in
Fig. 4. In the top row the results for Ren et al. [8], W-DIP
and W-DIP fine-tuned is shown when the kernel estimate
is “bad”, meaning the size of the kernels are estimated too
large. In the bottom row the results for the same methods
can be seen if the kernel size esimate is more accurate, de-
noted as “good”. For this particular kernel the size esti-
mate decreased from 31× 31 (“bad”) too 21× 21 (“good”).
Whereas Ren et al. [8] seems to profit from the more accu-
rate kernel size estimate the results of our method is more
stable to this change.

6. Hyper-parameter Tuning
To select the weighting parameters (α, β, λ) four images

from the Levin et al. [5] dataset were used, namely: I1K4,

I2K2, I2K7 and I4K8, where “I” and “K” represent the re-
spective sharp image and kernel that was used to blur it.
The examples can be found in the provided data. An initial
random weight assignment in the range of [1, 1e−1, 1e−2,
1e−3, 1e−4, 1e−5] was performed for the weights and for
the learning rate a range of [1e−1, 1e−2, 1e−3, 1e−4, 1e−5,
1e−6, 1e−7, 1e−8] was investigated. Based on the results of
the initial random parameter search, the search space was
condensed to [1e−2, 1e−3, 1e−4] for the weights and [1e−5,
1e−6, 1e−7] for the learning rate. Within this parameter
range the results on the selected images was stable and a
final selection was done leading to the parameter weights,
α = 1e−3, β = 1e−4, λ = 1e−3 and setting the learning
rate for the auxiliary kernel to 1e−6.

The fine-tuning of the weights for the microscopy dataset
was done within the range of the condensed search space
but with the addition of [1e−1] for the parameter weights.
The images I0K0 and I0K1 were used to evaluate on, where
“I” and “K” represent the respective sharp image and ker-
nel that was used to blur it. The examples can be found in
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Figure 3: The sharp images and blur kernels of the microscopy dataset is shown.

Input SelfDeblurbad W-DIPbad W-DIP FTbad GTbad

Input SelfDeblurgood W-DIPgood W-DIP FTgood GTgood

Figure 4: The results of blind deconvolution can be seen for Ren et al. [8], W-DIP, W-DIP fine-tuned (FT) for different kernel size estimates.
In the bottom row it can be seen that if the kernel size estimate is “good” then all methods perform well with respect to the ground truth
(GT). In the top row it is shown that if the kernel size estimate is “bad”, that means too large in this case, that only methods with Wiener-
deconvolution guidance arrive at reasonable solutions.

the provided data. The final selection for the microscopy
dataset was, α = 1e−2, β = 1e−1, λ = 1e−2 and setting
the learning rate for the auxiliary kernel to 1e−7.

7. Qualitative Examples Non-uniform Blur

Blur in the real-world is not always uniform as many of
the benchmark datasets assume. To show that our method



can also handle real-world blur, we included qualitative ex-
amples from the Lai et al. [4] dataset in the main article.
Here we provide qualitative examples of specifically non-
uniform blur taken from the dataset Kohler et al. [3] and is
shown in Fig. 5-6. It can be seen that W-DIP can still pro-
vide good results for kernels that vary little spatially, Fig.5.
Even for larger kernels W-DIP produce reasonable results,
Fig.6, especially compared to neural blind deconvolution
without Wiener-guidance [8]. Failure cases have also been
observed and more quantitative results will be necessary to
determine to what extent W-DIP can address non-uniform
blur.

8. Additional Qualitative Examples

In this section we provide additional qualitative exam-
ples on the introduced datasets. In Figures 7, 8, 9 qualita-
tive comparisons on the Lai et al. [4] dataset is shown from
the categories not shown in the main paper namely, “man-
made”, “saturated” and “text”.

Next three examples from the Levin et al. [5] is shown
in Figures 10, 11, 12. It should be noted that in general
the performance of Ren et al. [8] can be good and some of
the examples taken are failure cases that are run dependent.
Nevertheless, all three images from Ren et al. [8] and W-
DIP are from the same run.

Lastly, we show results on the Sun et al. [10] in Figures
13 and 14 and real-world images [4] in Figures 16 and 15.

9. High-frequency Artifact Suppression

To further provide qualitative examples for the delayed
reproduction of high-frequency artifacts of deconvolution
we show DIP results for the Levin et al. [5] and custom
microscopy dataset below in Figs. 17 and 18, respectively.
The suppression is best appreciated when zoomed in.

References
[1] Emmanuelle Chaigneau, Amanda J Wright, Simon P Poland,

John M Girkin, and R Angus Silver. Impact of wavefront dis-
tortion and scattering on 2-photon microscopy in mammalian
brain tissue. Optics express, 19(23):22755–22774, 2011.

[2] Sunghyun Cho and Seungyong Lee. Fast motion deblurring.
In ACM SIGGRAPH Asia 2009 papers, pages 1–8, 2009.
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Blurred Image Cho et al. [2] Whyte et al. [11]

Xu et al. [12] Ren et al. [8] W-DIP

Figure 5: Visual results from the non-uniform blur dataset by Kohler et al. [3]. W-DIP is compared with four baselines.

Blurred Image Cho et al. [2] Whyte et al. [11]

Xu et al. [12] Ren et al. [8] W-DIP

Figure 6: Visual results from the non-uniform blur dataset by Kohler et al. [3]. W-DIP is compared with four baselines.



Blurred Image Pan-DCP et al. [6] Perrone et al. [7]

Ground Truth Ren et al. [8] W-DIP

Figure 7: Additional visual results from the Lai et al. [4] dataset to compare W-DIP with three baselines.

Blurred Image Pan-DCP et al. [6] Perrone et al. [7]

Ground Truth Ren et al. [8] W-DIP

Figure 8: Additional visual results from the Lai et al. [4] dataset to compare W-DIP with three baselines.



Blurred Image Pan-DCP et al. [6] Perrone et al. [7]

Ground Truth Ren et al. [8] W-DIP

Figure 9: Additional visual results from the Lai et al. [4] dataset to compare W-DIP with three baselines.



Blurred Image Pan-DCP et al. [6] Zuo et al. [13]

Ground Truth Ren et al. [8] W-DIP

Figure 10: Additional visual results from the Levin et al. [5] dataset to compare W-DIP with three baselines.



Blurred Image Pan-DCP et al. [6] Zuo et al. [13]

Ground Truth Ren et al. [8] W-DIP

Figure 11: Additional visual results from the Levin et al. [5] dataset to compare W-DIP with three baselines.



Blurred Image Pan-DCP et al. [6] Zuo et al. [13]

Ground Truth Ren et al. [8] W-DIP

Figure 12: Additional visual results from the Levin et al. [5] dataset to compare W-DIP with three baselines.

Blurred Image Ground Truth Ren et al. [8] W-DIP

Figure 13: Additional visual results from the Sun et al. [10] dataset to compare W-DIP with SelfDeblur [8].



Blurred Image Ground Truth Ren et al. [8] W-DIP

Figure 14: Additional visual results from the Sun et al. [10] dataset to compare W-DIP with SelfDeblur [8].

Blurred Image Pan-DCP et al. [6] Perrone et al. [7]

Ren et al. [8] W-DIP

Figure 15: Additional visual results from the Real world images dataset [4] to compare W-DIP with three baselines.



Blurred Image Pan-DCP et al. [6] Perrone et al. [7]

Ren et al. [8] W-DIP

Figure 16: Additional visual results from the Real world images dataset [4] to compare W-DIP with three baselines.
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Figure 17: Visual results that show the high-frequency artifact suppression by DIP for the Levin et al. [5] dataset. In the top row the
reconstruction result of DIP with the blurred image as target is shown. No transition over the sharp version of the blurred image can be
seen. In the bottom row the target image of DIP is the blurry image after it was deconvolved with a Gaussian kernel. It can be seen that the
introduced artifacts are suppressed, especially in the blue rectangle.
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Figure 18: Visual results that show the high-frequency artifact suppression by DIP for the custom microscopy dataset. In the top row the
reconstruction result of DIP with the blurred image as target is shown. No transition over the sharp version of the blurred image can be
seen. In the bottom row the target image of DIP is the blurry image after it was deconvolved with a Gaussian kernel. It can be seen that the
introduced artifacts are suppressed, especially in the green rectangle.


