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A. Mathematical Derivations

Derivation of Log-Likelihood Loss We model the like-
lihood with an uncorrelated, bivariate Gaussian with mean
F̂ = [F̂u, F̂ v]> and variance Σ̂ = Σ̂u = Σ̂v for flow direc-
tions u and v.
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Derivation of Confidence Map We integrate the bivari-
ate Gaussian density function over a circle with radius r
(subscripts are omitted).
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B. Training Details

In this section, we describe training settings and imple-
mentation details. Both alignment and segmentation net-

work were trained using Automatic Mixed Precision on a
single consumer RTX 2080 Ti GPU.

B.1. Alignment Network

UAWarpC training almost exactly follows the setup
of [27]. The training consists of two stages: In the first
stage, the network is trained without the visibility mask, as
the visibility mask estimate is still inaccurate. In the second
stage, the visibility mask is activated and more data aug-
mentation is used.

Data Handling The alignment network is trained using
MegaDepth [13], consisting of 196 scenes reconstructed
from 1,070,468 internet photos with COLMAP [22]. 150
scenes are used for training, encompassing around 58,000
sampled image pairs. 1800 image pairs sampled from 25
different scenes are used for validation. No ground-truth
correspondences from SfM reconstructions are used to train
UAWarpC.

During training, the image pairs I,J are resized to
750×750 pixels, and a dense flow W is sampled to create
I′. Finally, all three images I,J, I′ are center-cropped to
resolution 520×520. In the first training stage, W consists
of sampled color jitter, Gaussian blur, homography, TPS,
and affine-TPS transformations. In the second stage, local
elastic transformations are added, and the strength of the
transformations is increased. For the detailed augmentation
parameters, we refer to [27].

Architecture and Loss Function Again following [27],
a modified GLU-Net [25] is used as a base architecture for
flow prediction. GLU-Net is a four-level pyramidal network
with a VGG-16 [23] encoder. The encoder is initialized with
ImageNet weights and frozen. GLU-Net requires an addi-
tional low-resolution input of 256×256 to establish global
correlations, followed by repeated levels of upscaling and
local feature correlations. As in [27], our flow decoder uses



residual connections for efficiency. In addition, we replace
all transposed convolutions with bilinear upsampling, and
normalize all encoder feature maps, to increase the conver-
gence rate.

The uncertainty estimate is produced using the uncer-
tainty decoder proposed in [26]. However, instead of pre-
dicting the parameters of several mixture components, we
simply output a single value per pixel—the log-variance.

As in [27], the loss is applied at all four levels of the
pyramidal GLU-Net. We simply add the four components.
The employed loss functions are explained in Sec. 3.1 of
the main paper. To obtain the visibility mask for the sec-
ond training stage, we use the Cauchy-Schwarz inequality,
analogously to [27].
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1 denotes the element-wise indicator function. We use
α1 = 0.03 and α2 = 0.05.

Optimization Schedule For the first training stage, the
alignment network is trained with a batch size of 6 for 400k
iterations. We use the Adam optimizer [9] with weight
decay 4 · 10−4. The initial learning rate is 10−4, and is
halved after 250k and 325k iterations. For the second train-
ing stage, we use 225k training steps with initial learning
rate 5 · 10−5, halved after 100k, 150k, and 200k iterations.

B.2. Segmentation Network

For training the domain adaptive segmentation network,
we follow the employed base UDA method, respectively.
We summarize here the settings used with DAFormer [7].
For more details, and the DACS [24] settings, we refer to
the original papers or the authors’ codes1.

Data Handling Input images are resized to half resolu-
tion for Cityscapes [3], ACDC [20], and Dark Zurich [21].
For RobotCar Correspondence [17, 10] and CMU Corre-
spondence [1, 10], we resize to 720×720 and 540×720, re-
spectively. Data augmentation consists of random crop-
ping to 512×512 and random horizontal flipping. For the
coarsely labeled extra target images in the semi-supervised
domain adaptation for RobotCar and CMU, we additionally
apply random rotation with maximum 10° and color jitter-
ing.

1https://github.com/lhoyer/DAFormer,
https://github.com/vikolss/DACS
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Figure C-1. Correlation between
the average size of connected
components (on Cityscapes [3])
and mIoU score of warped refer-
ence image predictions for static
classes. Larger classes bene-
fit heavily from indiscriminate
warping.

Optimization Schedule We use the AdamW [15] opti-
mizer with a weight decay of 0.01. The learning rate fol-
lows a linear warmup for 1500 steps, followed by linear de-
cay. The peak learning rate is 6 · 10−4. On ACDC and
Dark Zurich, we train for 40k iterations; on RobotCar and
CMU, we train for 20k iterations. A batch size of 2 is used
throughout.

To mitigate the risk of overfitting, we use the coarsely la-
beled extra target images in semi-supervised domain adap-
tation on RobotCar and CMU only in every second training
iteration.

C. Small vs. Large Static Classes
To motivate the distinction between small and large static

classes (as defined in Sec. 3.2), we generate ACDC [20]
reference image predictions using a SegFormer [33] trained
on Cityscapes [3], and warp them onto the corresponding
adverse-image viewpoint. As shown in Fig. C-1, we ob-
serve a correlation between the resulting IoU and the aver-
age size of the connected class component for static classes
(pearson correlation coeff. of 0.70). The classes pole, traf-
fic light, and traffic sign are drastically smaller than the
rest, and consequentially have lower accuracy. On the other
hand, such indiscriminate warping (i.e., without PR) is sur-
prisingly accurate for the large static classes.

Furthermore, we analyze the mIoU improvement when
only considering pixels above a certain PR threshold for
the above mentioned warped SegFormer predictions, see
Fig. C-2. While the performance increases monotonically
for both dynamic and small static classes, it remains mostly
flat for large static classes. This suggests that large static
classes are largely insensitive to the warping confidence,
while both dynamic and small static classes benefit greatly
from confidence guidance.

D. Additional Experimental Results
Due to space restrictions, we present the full class-wise

performances of state-of-the-art UDA methods on Dark
Zurich-test here in Table D-1. The models reported in Ta-
bles 1, 2, and D-1 all use the same image input size at test-
time for fairness of comparison. Table D-2 presents mod-
els which do not follow that protocol. Using Cityscapes-
pretrained weights for initialization, Refign added on top of

https://github.com/lhoyer/DAFormer
https://github.com/vikolss/DACS


Table D-1. State-of-the-art comparison on Dark Zurich-test for Cityscapes→Dark Zurich domain adaptation. Methods above the double
line all use a DeepLabv2 [2] model. “Ref.”: For each adverse input image a reference image at similar geo-location is used.

Method Ref.
IoU ↑
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DeepLabv2 [2] 79.0 21.8 53.0 13.3 11.2 22.5 20.2 22.1 43.5 10.4 18.0 37.4 33.8 64.1 6.4 0.0 52.3 30.4 7.4 28.8

ADVENT [29] 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7

AdaptSegNet [28] 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4

BDL [12] 85.3 41.1 61.9 32.7 17.4 20.6 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 30.8

DANNet (DeepLabv2) [30] X 88.6 53.4 69.8 34.0 20.0 25.0 31.5 35.9 69.5 32.2 82.3 44.2 43.7 54.1 22.0 0.1 40.9 36.0 24.1 42.5

DANIA (DeepLabv2) [31] X 89.4 60.6 72.3 34.5 23.7 37.3 32.8 40.0 72.1 33.0 84.1 44.7 48.9 59.0 9.8 0.1 40.1 38.4 30.5 44.8

DACS [24] 83.1 49.1 67.4 33.2 16.6 42.9 20.7 35.6 31.7 5.1 6.5 41.7 18.2 68.8 76.4 0.0 61.6 27.7 10.7 36.7

Refign-DACS X 89.9 59.7 69.5 28.5 11.6 39.0 17.1 35.0 35.7 18.8 30.4 38.8 43.1 72.3 73.7 0.0 61.6 33.9 24.7 41.2

DMAda (RefineNet) [5] X 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 34.9 11.9 32.1

GCMA (RefineNet) [18] X 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0

MGCDA (RefineNet) [21] X 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5

CDAda (RefineNet) [34] X 90.5 60.6 67.9 37.0 19.3 42.9 36.4 35.3 66.9 24.4 79.8 45.4 42.9 70.8 51.7 0.0 29.7 27.7 26.2 45.0

DANNet (PSPNet) [30] X 90.4 60.1 71.0 33.6 22.9 30.6 34.3 33.7 70.5 31.8 80.2 45.7 41.6 67.4 16.8 0.0 73.0 31.6 22.9 45.2

CCDistill (RefineNet) [6] X 89.6 58.1 70.6 36.6 22.5 33.0 27.0 30.5 68.3 33.0 80.9 42.3 40.1 69.4 58.1 0.1 72.6 47.7 21.3 47.5

DANIA (PSPNet) [31] X 91.5 62.7 73.9 39.9 25.7 36.5 35.7 36.2 71.4 35.3 82.2 48.0 44.9 73.7 11.3 0.1 64.3 36.7 22.7 47.0

DAFormer [7] 93.5 65.5 73.3 39.4 19.2 53.3 44.1 44.0 59.5 34.5 66.6 53.4 52.7 82.1 52.7 9.5 89.3 50.5 38.5 53.8

Refign-DAFormer X 91.8 65.0 80.9 37.9 25.8 56.2 45.2 51.0 78.7 31.0 88.9 58.8 52.9 77.8 51.8 6.1 90.8 40.2 37.1 56.2
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Figure C-2. Performance in-
crease for different class cate-
gories as a function of the warp
confidence (PR) threshold. Dy-
namic classes and small static
classes (see Sec. 3.2) are more
sensitive to the warp confidence,
while large static classes do not
improve considerably.

Table D-2. State-of-the-art comparison of models which do not
follow the common image input resizing protocol. Refign-HRDA
currently ranks first on public leaderboards.

Method
Cityscapes→ACDC Cityscapes→Dark Zurich

ACDC [20] Dark Zurich-test [21] ND [5] Bn [36, 21]

SePiCo (DAFormer) [32] - 54.2 57.1 36.9

HRDA [8] 68.0 55.9 55.6 39.1

Refign-HRDA 72.1 63.9 57.8 40.6

HRDA [8] achieves 72.1 mIoU and 63.9 mIoU on ACDC
and Dark Zurich-test, respectively, ranking first on the pub-
lic leaderboards of these benchmarks at the time of publica-
tion.

In Table D-3, we report the performance of
Cityscapes→ACDC Refign-DAFormer on the four
different conditions of the ACDC validation set. Refign
improves markedly over the baseline for all conditions.

We also compare the Cityscapes→ACDC Refign-
DAFormer model with state-of-the-art foggy scene under-
standing methods in Table D-4. All methods are trained

Table D-3. Performance of Cityscapes→ACDC models for differ-
ent conditions on the validation set.

Method
mIoU ↑

night snow rain fog

DAFormer [7] 34.8 56.3 58.5 67.9

Refign-DAFormer 48.1 65.0 65.2 73.4

Table D-4. Performance comparison with specialized foggy scene
understanding methods on the Foggy Zurich [4] and Foggy Driv-
ing [19] test sets.

Method
Target Domain Training Data mIoU ↑

Foggy CS-DBF [4] Foggy Zurich[4] ACDC [20] Foggy Zurich [4] FoggyDriving [19]

CMAda3+ [4] X X 46.8 49.8

FIFO [11] X X 48.4 50.7

CuDA-Net+ [16] X X 49.1 53.5

TDo-Dif [14] X X 51.9 50.7

Refign-DAFormer X 51.4 53.9

with Cityscapes as source domain, however the foggy scene
understanding methods utilize both synthetic foggy data
and a larger pool of real foggy data as targets. Surprisingly,
our model achieves state-of-the-art performance despite this
handicap.

Finally, we conduct experiments substituting the Seg-
Former [33] based architecture of DAFormer [7] with
DeepLabv2 [2]. On both ACDC and Dark Zurich valida-
tion sets, this version of Refign improves substantially over
the baseline, as reported in Table D-5.

E. Refign at Test-Time
Although designed to refine pseudo-labels during online

self-training, Refign can also be applied at test-time to ar-



Table D-5. Performance of Refign vs. DAFormer baseline with a
DeepLabv2 model on the ACDC and Dark Zurich validation sets.

Method
mIoU ↑

ACDC [20] Dark Zurich [21]

DAFormer (DeepLabv2) [7] 46.4 24.8

Refign-DAFormer (DeepLabv2) 55.6 38.7

Table E-1. Applying Refign only for one refinement iteration at
test-time to DAFormer on the ACDC and Dark Zurich validation
sets.

Method
mIoU ↑

ACDC [20] Dark Zurich [21]

DAFormer [7] 55.6 34.1

DAFormer + Test-Time Refign 56.8 38.0

bitrary, trained models, if a reference image is available.
We report ACDC and Dark Zurich validation set scores in
Table E-1. The performance gain is more moderate than
if Refign is applied at training-time. This is unsurprising,
given that we only conduct a single refinement iteration in
that case.

F. Qualitative Results
We show more qualitative results in this section. Fig. F-

1 shows the warps and corresponding confidence maps for
randomly selected ACDC samples. In Fig. F-2, we show
some warp failures. Importantly, the confidence map cor-
rectly blends out the inaccurate warps. Finally, Fig. F-3
shows more qualitative segmentation results for randomly
selected ACDC validation samples.

G. Potential Negative Societal Impact
We present a method to adapt existing semantic segmen-

tation models to new domains. Even though we restrict
ourselves to adverse-condition autonomous driving in this
paper, our algorithm could potentially be used in more un-
desired applications, such as surveillance or military. This
risk of potential misuse exists for all semantic segmenta-
tion algorithms, and could be mitigated through appropriate
legislation.
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Figure F-1. Example visualizations of warped reference images and the corresponding confidence maps from ACDC.
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Figure F-2. Warp failure examples on ACDC.
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Figure F-3. Prediction samples of the ACDC validation set.


