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A. OOD Detection Results on Fashion-MNIST
Table 1 shows the OOD detection results on Fashion MNIST in VAE. Our method FRL achieves a strong performance

across all OOD datasets, with an average AUROC score of 0.976. Among the challenging OOD datasets for Input Complexity
(IC) [7], such as LSUN and Noise, FRL achieves nearly optimal OOD detection performance.

Table 1: AUROC values for OOD Detection in VAE when Fashion-MNIST is the in-distribution dataset.

OOD Dataset NLL LRatio LR(Z) LR(E) IC FRL
[4] [5] [9] [9] [7] (ours)

SVHN 0.998 0.546 0.795 1.000 0.999 1.000
LSUN 1.000 0.991 0.691 0.995 0.508 1.000
CIFAR-10 1.000 0.929 0.751 0.999 0.905 1.000
MNIST 0.165 0.864 0.589 0.961 0.932 0.909
KMNIST 0.630 0.967 0.620 0.992 0.629 0.887
Omniglot 1.000 1.000 0.725 1.000 1.000 1.000
NotMNIST 0.979 0.965 0.721 1.000 0.909 0.988
Noise 1.000 1.000 0.603 0.999 0.490 1.000
Constant 0.938 0.416 0.761 0.998 1.000 1.000
Average 0.857 0.853 0.695 0.994 0.819 0.976

Num img/s (↑) 557.0 284.4 2.6 1.3 360.0 262.0

Tinference(s) (↓) 0.0018 0.0035 0.3779 0.7419 0.0028 0.0038

B. Diagnosing the failure cases of prior approaches
Though the complexity score (IC) mitigates many failure cases compared to directly employing NLL, IC struggles with

a few special failure cases. In particular, we show the score distribution when the Noise dataset serves as the OOD dataset
for VAE trained on Fashion-MNIST (ID). Shown in Figure 1, the scores for Noise lie in the middle of the scores for
Fashion-MNIST, which is undesirable. This is because the image code length is only the approximation of the complexity
score. In contrast, FRL enables effective model regularization, which better distinguishes Noise and Fashion-MNIST data.
Moreover, we also notice that FRL produces a more concentrated score distribution for ID data (green shade), benefiting the
OOD detection.
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Figure 1: The distribution of OOD scores SF (x) for Fashion-MNIST and Noise dataset when Fashion-MNIST serves as
the in-distribution dataset. Two panels denote the distributions under IC and FRL, respectively.

C. Ablations on Gaussian Kernel Sizes
Similar to the ablation studies on Gaussian kernels in VAE, we train GLOW [3] and PixelCNN++ [6] models with different

kernel sizes on CIFAR-10, and evaluate the OOD detection performance respectively. The average AUROC across all OOD



datasets is shown in Figure 2. Results also suggest that FRL is not sensitive to the choice of kernel size.
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Figure 2: Ablation on Gaussian kernel sizes in GLOW and PixelCNN++. CIFAR-10 is the in-distribution data. Results are
averaged over all OOD test datasets.

D. Model Overview for PixelCNN++
The overview of PixelCNN++ [6] under FRL is shown in Figure 3. For each pixel, four channels (xH , R, G, B) are

modeled successively, with xH conditioned on (R, G, B), B conditioned on (R, G), and G conditioned on R. Here xH denotes
the high-frequency features given input x in FRL. The sequential prediction is achieved by splitting the feature maps at every
layer of the network into four and adjusting the centre values of the mask tensors. The 256 possible values for each channel
are then modeled using the softmax.

PixelCNN++ [6] consists of a stack of masked convolution layers that takes an N ×N × 4 image as input and produces
N × N × 4 × 256 predictions as output. The use of convolutions allows the predictions for all the pixels to be made in
parallel during training. During sampling the predictions are sequential: every time a pixel is predicted, it is fed back into the
network to predict the next pixel.
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Figure 3: Overview of PixelCNN++ under FRL.

E. Model Overview for GLOW
The overview of GLOW [3] under FRL is shown in Figure 4.
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Figure 4: Overview of the GLOW under FRL.
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Figure 5: The qualitative reconstruction results for CelebA under VAE. (a) shows the source images randomly picked from
CelebA. (b) Shows the reconstruction results under the vanilla VAE training scheme. (c) shows the results when VAE is
trained jointly with pixel level input and the high frequency information.

GLOW consists of a series of steps of flow, combined in a multi-scale architecture [3]. Each step of flow consists of
actnorm followed by an invertible 1 × 1 convolution and a coupling layer. The GLOW model has a depth of flow K, which
maps the latent variable z0 to input xF .

F. More Training Details
We provide more details for training on each of the architecture: VAE, GLOW and PixelCNN+.
(1) We train VAE using learning rate 1 × 10−3 and Adam optimizer [2]. The learning rate is decayed by half every 30

epochs. The encoder of VAEs consists of four convolutional layers of kernel size 4, strides 2 without biases. The decoder of
VAEs has a symmetric structure to the encoder, reconstructing the image pixel-wise. In VAE, the distribution of the latent
code prior p(z) and the variational posterior qϕ(z|x) are set to be Gaussians. In our experiments, the dimension for the latent
code p(z) is set to be 200 for CIFAR-10 and CelebA, and 100 for Fashion-MNIST. Following [9], pθ(x | z) is chosen to be
follow the 256-way discrete distribution. In image domain, this distribution corresponds to an 8-bit image on each pixel.

(2) For GLOW, the number of the hidden channels is 400 for CIFAR-10 and 200 for Fashion-MNIST. 3-layer networks are
used in the coupling blocks. We use two blocks of 16 flows for Fashion-MNIST, and three blocks of 8 flows with multi-scale
for CIFAR-10. Following [3], we adopt the invertible 1× 1 convolutional (InvConv) layers in GLOW.

(3) In PixelCNN++, all residual layers use 192 feature maps and a dropout rate of 0.5. There are overall 160 filters across
the model.

G. Qualitative Results of Image Generation
FRL not only significantly improves the OOD detection performance, but also preserves the generative capability. Fig-

ures 5 shows the visualizations of the reconstruction results under the vanilla VAE and FRL for CelebA, where the recon-
struction quality of FRL is not compromised. We further quantitatively measure the reconstruction results in Table 2. FRL



achieves stronger results measured by both pixel-level and perception level metrics, including mean-square error (MSE),
mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and SSIM.

Table 2: CelebA reconstruction performance, measured by the image reconstruction quality between vanilla VAE and FRL.
Evaluation metrics includes mean-square error (MSE), mean absolute error (MAE), peak signal-to-noise ratio (PSNR) [1],
and SSIM [8]. ↑ means that higher value represents better image quality, and vice versa.

Metrics
Method

vanilla VAE FRL

MSE ↓ 0.0041 0.0037
MAE ↓ 0.0352 0.0337
PSNR ↑ 24.657 25.097
SSIM ↑ 0.7662 0.7806

H. Social Impact
This paper aims to improve the reliability and safety of modern neural networks, particularly generative model families.

Our study can lead to direct benefits and societal impacts when deploying machine learning models in the real world. Our
work does not involve any human subjects or violation of legal compliance. We do not anticipate any potentially harmful
consequences. Through our study and releasing our code, we hope to raise stronger research and societal awareness towards
the problem of out-of-distribution detection.
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