
Supplementary:

Self-Distillation for Unsupervised 3D Domain Adaptation

Adriano Cardace Riccardo Spezialetti Pierluigi Zama Ramirez

Samuele Salti Luigi Di Stefano

Department of Computer Science and Engineering (DISI)

University of Bologna, Italy

{adriano.cardace2, riccardo.spezialetti, pierluigi.zama}@unibo.it

1. Data Augmentation Qualitatives

In Fig. 1 we show some training samples obtained

with our data augmentation function f used in the self-

distillation process explained in Sec. 3.2. In orange, we

depict original and augmented versions of 3D models from

a synthetic dataset e.g. ModelNet. On the right, we show

samples obtained from real scans of ScanNet.

1.1. Implementation details

We develop our framework in PyTorch [2] on a single

NVIDIA 3090 GPU. We show results using two differ-

ent backbones for our feature extractors: PointNet [3] and

DGCNN [5]. In both cases, the embeddings have size 1024.

We train both the self-distillation step and the self-training

step for 100 epochs from scratch, and adopt AdamW [1]

as optimizer and the One Cycle policy [4] as a scheduler,

with maximum learning rate at 0.001. We use batch size

64 and 16 for PointNet and DGCNN, respectively. As for

our hyper-parameters, we set ϵ=0.95, τ=0.5, τ̃=0.1. These

values are fixed for all experiments, and we do not perform

a grid search to find the best hyper-parameters for each set-

ting as this would lead to an unfair usage of target domain

labels. Regarding the GCN, we train it for 1000 epochs

every 5 epochs, and training time for the largest dataset,

i.e. ShapeNet, takes only roughly 10 seconds. In total, the

GCN accounts only for 200 seconds of the total training

time, allowing us to maintain a good trade-off between ac-

curacy and training time. In all cases, each shape consists

of 2048 points, and following the literature we randomly

sub-sample 1024 points both at train and test time. Finally,

all shapes are aligned along the x and y axis, while rotation

along z are possible.

2. Pseudo-labels Micro-Average Precision

Over Time

In this section we illustrate the capability of our refine-

ment technique based on a GCN to improve pseudo-labels

online during training. We compare the pseudo-labels re-

fined online by the GCN with the initial pseudo labels ob-

tained from the first step of our pipeline using the Micro-

Average Precision score i.e. the mean precision across all

classes. We argue that it is important to prefer precision

over recall when using pseudo-labels, as a high precision

would lead to correct pseudo-labels from which the net-

work can have clean supervision. On the other hand, a

high recall could hinder the training process due to the high

number of false positives. We report this comparison for

ModelNet→ScanNet in Fig. 2 and for ScanNet→ModelNet

in Fig. 3. In the former case, we observe that the pseudo-

labels refined by the GCN immediately starts to outperform

the initial set, proving the real benefit of our online refine-

ment approach. In the latter instead, we note how the initial

pseudo-labels are better compared to the one obtained with

the GCN. However, as training proceeds, the graph structure

improves and the GCN is capable to exploit the relation-

ships among samples to improve pseudo-labels, surpassing

the initial pseudo-labels and leading to better performance.

Note that in both Figures and with both kind of pseudo-

labels the curves exhibit a decreasing trend. This is due to

the fact that we report the Micro-Average Precision scores

for the confident set Ŷtc, that varies, i.e. increases, in size

during training (see the black dashed line in both Figures).

Indeed, as explained in Sec. 3.4, we decrease the filtering

threshold θ to select more pseudo-labels after each refine-

ment which, as a side effect, increases the amount of er-

rors in the pseudo-labels. It is worth highlighting that this

applies also to the initial pseudo-labels (red lines in both

Figures): although they do not change during training, their

precision worsen as we gradually consider more -and less

confident- samples.

Figure 1: Data augmentation Examples. Point clouds before and after data augmentation f . In orange synthetic point

clouds from ModelNet. In blue real point clouds from ScanNet.

Method
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

No Adaptation 80.5 41.6 75.8 40.0 60.5 63.6 60.3

Self-train naive from No Adaptation 83.1 50.9 75.2 47.1 68.8 70.6 66.0

Self-distillation 82.1 57.2 77.6 55.0 71.0 72.1 69.2

Self-train naive from self-distillation 82.7 59.3 74.9 56.4 77.1 77.8 71.4

Table 1: Simple self-training from No Adaptation vs Simple self-training from self-distillation. For all experiments, we use

PointNet as feature extractor and report the mean across three different runs.

Method
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

No Adaptation 83.3 43.8 75.5 42.5 63.8 64.2 62.2

Self-distillation 81.6 57.9 78.2 55.3 79.8 76.2 71.5

Self-train from self-distillation 83.9 61.1 80.3 58.9 85.5 80.9 75.1

Table 2: Step-wise Results with DGCNN.

3. Additional Experiments

Self-training baseline. In this section, we report addi-

tional experiments of our framework. In Tab. 1, we compare

the naive self-training strategy applied on top of two dif-

ferent baselines i.e. no adaptation (first row) and our base-

line with feature distillation. We first note that with our

self-distillation, we already obtain a consistent improve-

ment over the no adaptation version. This leads to better

pseudo-labels that consequently improves results when ap-

plying the same self-training strategy. Indeed, the effective-

ness of a naive self-training, that consists in training a clas-

sifier with source and target data simultaneously, is propor-

tional with the quality of the pseudo-labels. Thus, it works

better with pseudo-labels extracted from a model that com-

prises our feature distillation on the target domain since it is

a stronger baseline.

Results with DGCNN. In Tab. 2 we report ablation re-

sults obtained using the DGCNN architecture. First of all,

we compare the simplest baseline (No adaptation), with our

model used in the first step to obtain pseudo-labels (second

row). We note a similar trend w.r.t. PointNet (Tab. 1 of

the main paper). Indeed, by using our self-distillation mod-

ule we dramatically boost performance over the no adapta-

tion baseline. Moreover, when using the pseudo-labels from

the proposed baseline, and applying self-training (third row)

with our online refinement that exploits GNNs, we further

increase performances reaching 75.1%. These results vali-

date our contributions also across architectures.

Sensitivity Analysis for λ. We depict in Fig. 4 a sen-

sitivity analysis of our framework with different values for

λ. As explained in Sec. 3.4, λ controls the weight for the

non-confident set of pseudo-labels, i.e. Ŷtn. We run the ex-

periments on two different settings, ModelNet→ScanNet

and ShapeNet→ScanNet from left to right. We observe a

2000 4000 6000 8000 10000 12000 14000
Steps

0.55

0.60

0.65

0.70

0.75

M
icr

o-
Av

er
ag

e
Pr

ec
isi

on

Precision GCN
Precision PL
Confident Samples 0

1000

2000

3000

4000

5000

6000

Co

nf
id

en
t S

am
pl

es

Figure 2: Precision pseudo-labels improvement over ini-

tial set of pseudo-labels in the confident set Ŷtc in

ModelNet→ScanNet. Note that the number of confident

samples (dashed line) extracted with the GCN increases

with the number of steps.

2000 4000 6000 8000 10000 12000 14000
Steps

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

M
icr

o-
Av

er
ag

e
Pr

ec
isi

on

Precision GCN
Precision PL
Confident Samples 0

1000

2000

3000

4000

Co

nf
id

en
t S

am
pl

es

Figure 3: Precision pseudo-labels improvement over ini-

tial set of pseudo-labels in the confident set Ŷtc in

ScanNet→ModelNet. Note that the number of confident

samples (dashed line) extracted with the GCN increases

with the number of steps.

similar trend in both cases, and note that our method is not

particularly affected by the value of this hyper-parameter.

Sensitivity Analysis for node degree. As explained in

Sec. 3.4, the amount of memory required by the GNN is

proportional to the average number of neighbours of each

node in the graph (node degree). To keep training time af-

fordable, we limit this value to 10, which we found to be

a good trade-off between time and performance improve-

ment. We also try to further limit the node degree to 3 for

ModelNet→ScanNet and obtained 61.4, which is compara-

ble with the 61.6 obtained in Tab. 1 of the main paper with

the same architecture. This suggests that our algorithm is

rather insensitive to the node degree.

4. t-SNE Visualisation

In Fig. 5 and Fig. 6 we depict a feature space vi-

sualization of the target domain obtained with t-SNE

for ModelNet→ScanNet and ScanNet→ModelNet, respec-

tively. Although t-SNE does not provide a systematic way

to quantitatively compare two models, we observe a bet-

ter feature space in both cases when applying our method

with respect to the baseline (No Adaptation). In particu-

lar, in the challenging case of synthetic-to-real adaptation,

we appreciate how samples of the same class such as, e.g.,

chair (green dots) are less prone to be spread across all other

categories. Moreover, we also note the formation of small

clusters for classes such as sofa and bathtub. We ascribe

this to the distillation loss, which has been explicitly de-

signed for this behaviour. As regards ScanNet→ModelNet,

the clusters in feature space of the no adaptation model (left)

appears to be more delineated compared to the previous

setting, suggesting that this scenario is simpler. However,

we again perceive a better feature space when applying our

framework. Indeed, clusters appear more compact. We also

highlight how some classes that exhibit similar shapes, such

as bed and sofa or cabinet and bookshelf seems to be better

separated.

References

[1] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. In International Conference on Learning Rep-

resentations, 2019.

[2] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-

dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu

Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-

perative style, high-performance deep learning library. In H.

Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.

Fox, and R. Garnett, editors, Advances in Neural Information

Processing Systems 32, pages 8024–8035. Curran Associates,

Inc., 2019.

[3] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification and

segmentation. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 652–660, 2017.

[4] Leslie N. Smith and Nicholay Topin. Super-convergence: very

fast training of neural networks using large learning rates. Ar-

tificial Intelligence and Machine Learning for Multi-Domain

Operations Applications, May 2019.

[5] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. Acm Transactions On

Graphics (tog), 38(5):1–12, 2019.

0.0 0.2 0.5 1.0
Lambda

60.4

60.6

60.8

61.0

61.2

61.4

61.6

Ac
cu
ra
cy

0.0 0.2 0.5 1.0
Lambda

56.6

56.8

57.0

57.2

57.4

57.6

Ac
cu
ra
cy

Figure 4: Sensitivity Analysis for parameter λ. Experiments conducted on ModelNet→ScanNet (left) and

ShapeNet→ScanNet (Right)

bathtub
bed
bookshelf
cabinet
chair
lamp
monitor
plant
sofa
table

(a) No Adaptation

bathtub
bed
bookshelf
cabinet
chair
lamp
monitor
plant
sofa
table

(b) Our Method

Figure 5: ModelNet→ScanNet

bathtub
bed
bookshelf
cabinet
chair
lamp
monitor
plant
sofa
table

(a) No Adaptation

bathtub
bed
bookshelf
cabinet
chair
lamp
monitor
plant
sofa
table

(b) Our Method

Figure 6: ScanNet→ModelNet

