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1. Physically-based rendering model
Our physically-based rendering model is based on the

implementation of [18]. Here, we provide a summary of
the model for completeness. We compute the radiance rpb

emitted from a surface point x with normal n in the viewing
direction ωo using the non-emitting rendering equation

rpb(ωo,x) =

∫
Ω

l(ωi)
(
fd(x)+ks f

s(x,ωi,ωo)
)
(ωi·n)dωi,

(1)
where l(ωi) is the incident light from direction ωi, the func-
tions fd, f s are the diffuse and specular components of the
BRDF respectively, and the scalar ks ∈ [0, 1] controls their
relative weight. The integral is computed over the hemi-
sphere Ω = {ωi : ωi · n > 0}.

We express all the terms in the rendering equation using
spherical gaussians, which allows us to compute the integral
in a closed form. A spherical gaussian (SG) is a spherical
function of the form

G(ν; ξ, λ,µ) = µ exp(λ(ν · ξ − 1)), (2)

where ν ∈ S2 is the normalised input direction, ξ ∈ S2 is
the direction of the lobe, λ ∈ R+ is the lobe sharpness, and
µ ∈ Rn

+ the lobe amplitude.
We represent the environment map l(ωi) as a mixture of

Nl spherical gaussians:

l(ωi) =

Nl∑
l

G(ωi; ξl, λl,µl). (3)

The diffuse component of the BRDF is a scaled spatially
varying RGB albedo, a ∈ R3, with no angular dependence:

fd(x) = a(x)/π (4)

The specular BRDF, f s, used in [18] is based on the Cook-
Torrance model, and has the form:

f s(ωo,ωi) = M(ωo,ωi)D(h) (5)

*This work was done prior to joining Amazon.

where h = (ωo +ωi)/∥ωo +ωi∥2. The normalized distri-
bution function D is expressed as a single SG:

D(h) = G(h;n,
2

R4
,

1

πR4
) (6)

where R is the roughness parameter. This can be expressed
as a function of ωi by a spherical warping:

D(ωi) ≈ G(ωi;n,
1

2R4n · ωo
,

1

πR4
) (7)

The function M accounts for the Fresnel and shadowing
effects, as is usual in the Cook-Torrance model:

M(ωo,ωi) =
F(ωo,ωi)G(ωo,ωi)

4(n · ωo)(n · ωi)

F(ωo,ωi) = s+ (1− s) 2−(5.55473ωh+6.8316)ωoh)

G(ωo,ωi) =
ωon

ωon(1− k) + k

ωin

ωin(1− k) + k

k = (R+ 1)2/8

(8)

To integrate the rendering equation, M is assumed to be
smooth over ωi, and is approximated by its value at ωi =
2(ωo ·n)n−ωo, which corresponds to the peak of the nor-
malized distribution function D. Putting equations 5, 7 and
8 together, we get

f s(ωo,ωi) ≈ G(ωi;n, λs, µs)

λs =
1

2R4n · ωo

µs = M
(
ωo, 2(ωo · n)n− ωo

)
/(πR4)

(9)

Finally, the clamped cosine term can also be approximated
with a single SG [16]:

ωin · n ≈ G(ωi; 0.0315,n, 32.7080)− 31.7003. (10)

Since all the components of the rendering equation are ex-
pressed as SGs, it can be integrated in closed form as ex-
plained in [16].



Figure 1: Six 3D landmark annotations used in the landmark consistency loss LLm. Subject is from the H3Ds dataset.

2. Reconstructing geometry from a single im-
age

In order to optimize zsa and θsa, we minimize the fol-
lowing loss [17]:

L = LRGB + λ10LMask + λ11LEik, (11)

where λ10 and λ11 are hyperparameters.
We next describe each component of this loss. Let P

be a mini-batch of pixels from image I, PRGB the subset
of pixels whose associated ray intersects the surface de-
fined by f sdf and which have a nonzero foreground mask
value, and PMask = P \PRGB. The LRGB is the photomet-
ric error, computed as LRGB = |P|−1

∑
p∈PRGB

|I(p) −
c(p)|. The loss LMask accounts for silhouette errors,
LMask = 1

α|P|
∑

p∈PMask
CE(M(p), sα(p)) , where sα =

sigmoid(−αmint≥0 f
sdf(rt)) is the estimated silhouette,

CE is the binary cross-entropy and α is a hyperparameter.
Lastly, LEik encourages f sdf to approximate a signed dis-
tance function.

3. Implementation Details
We implement equations 1, 2b, 4, 9a, 9b from the main

paper, as well as the illumination decoder lθl,zl
and the

albedo refinement network arθar
, using MLPs with one skip

connection from the input of the network to the input of a
hidden layer, as in [11]. We use a SoftPlus activation func-
tion in all the hidden layers. We apply positional encoding
(PE) [15] to some of the inputs of the networks. Find details
in Table 1.

3.1. SA-SM Training

The SA-SM pretraining optimization is iterated for 100
epochs using the Adam optimizer [8] with standard param-
eters, learning rate of 10−4 and learning rate step decay of
0.5 every 15 epochs. The loss hyperparameters are set to
λ1 = 0.1, λ2 = λ3 = λ5 = 10−3, λ4 = 1. We automati-

cally annotate six 3D facial landmarks for each scene (Fig.
1), which are used for the landmark consistency loss.

The weigths of the reference SDF network (Eq. 2b)
are initialized using the geometric initialization described
in [2]. The weights of the deformation and rendering net-
works are initialized as multivariate gaussians of zero mean
and variance 10−4. The latents zsdf and zr are initialized as
zero vectors.

We use a progressive masking of the positional encoding
of the input to the reference SDF [10, 12, 6], so as to min-
imize artifacts on the reference shape and make the train-
ing process more stable. Initially masking the higher fre-
quency bands acts as a dynamic low-pass filter, allowing the
model to reach robust coarse solutions before adding high-
frequency content. At a given step, we compute the param-
eter α ∈ [0, L] proportional to the progress of the training,
where L is the total number of frequencies used in the PE.
The Fourier embedding of frequency k is then multiplied by
a scalar wk(α):

wk(α) =


0 α ≤ k

(1− cos (α− k)π)/2 0 ≤ α− k ≤ 1

1 α− k ≥ 1

.

(12)
We start masking all frequencies in the PE, and unmask

them progressively between epochs 20 and 30, by increas-
ing the parameter α linearly from 0 to L.

3.2. AF-SM Training

The AF-SM pretraining optimization is iterated for 600
epochs using the Adam optimizer with standard parameters,
learning rate of 5 · 10−4 and learning rate step decay of
0.5 every 150 epochs. The loss hyperparameters are set to
λ6 = 10−3, λ7 = 0.1 and ϵ = 10−2.

The weights of the diffuse albedo, albedo refinement,
specular albedo and light networks are initialized as mul-
tivariate gaussians of zero mean and variance 10−4. The la-



Network
Num
layers

Layer
width

Skip connection
index

Input
(Dimensions)

Output
(Dimensions)

Last activation
function

fdef
θdef ,zsdf

5 512 3
(x, PE6(x), zsdf )

(3, 36, 256)
(δ, γ)

(3, 128) sigmoid, -

f ref
θref

3 512 2
(xref , PE6(xref))

(3, 36) s, 1 -

rθr,zr
4 512 2

(xref , v, PE4(v), n, γ, zr)
(3, 3, 24, 3, 128, 128) c, 3 tanh

aθa,za 4 512 -
(xref , PE6(xref), γ, za)

(3, 36, 128, 128) a, 3 sigmoid

arθar
4 512 2

(xref , PE6(xref), γ)
(3, 36, 128) ar, 3 tanh

srθs,zs
3 256 -

(γ, zs)
(128, 64) s, 1 sigmoid

lrθl,zl
4 512 - zl, 128 l, 128×5 -

Table 1: Implementation details of the architecture. We include the SA-SM and the AF-SM models. (·) denotes concatena-
tion. The number of frequencies k in the positional encoding is denoted as PEk.

tents za, zs and zl are also initialized as zero vectors. How-
ever, in some networks we modify the biases of the last layer
so that the initial output is different from 0. We set a bias of
0.55 in the diffuse and specular albedo networks. The light
network is initialized to output 128 uniformly distributed
lobes on a sphere, using the Fibonacci sphere algorithm [7].

3.3. Reconstructing geometry from a single image

At test time, the 3D reconstruction of a scene is done
over 2000 epochs using Adam with initial learning rate of
10−4 and learning rate step decay of 0.5 at epochs 1000 and
1500. The parameter α in the mask loss LMask is scheduled
as in [17]. We use a two-step scheduling where the weights
of the deformation and rendering networks are unfrozen at
epoch 100.

3.4. Appearance factorization from a single image

The appearance factorization process is done over 10000
epochs using Adam with initial learning rate of 5 · 10−4

and learning rate step decay of 0.5 at epoch 7000. The loss
hyperparameters are set to λ8 = 3 and λ9 = 2.

We use a scheduling (Fig. 2) suitable for the task of
appearance factorization using the pre-learnt AF-SM prior.
We initialize the appearance factorization networks with the
parameters of the pretrained AF-SM, {θa,0,θs,0,θl,0}. The
parameters of the albedo refinement network, θar, are ini-
tialized to yield a zero-mean, low-amplitude random refine-

ment field. The initial latent vectors, zpb are picked from a
multivariate normal distribution with zero mean and small
variance. The vectors xref and γ are obtained by evaluating
the function fdef optimized in the 3D reconstruction step.

During the first epochs, as we begin to minimize L,
we freeze all parameters except for the lighting decoder
weights and latent vector, θl and zl. We also disable the
specular radiance (ks = 0), as well as the albedo refinement
(kr = 0). In this stage, the model learns initial lights to
recover coarse shadows. Next, we unfreeze the albedo la-
tent vector za, allowing the model learn an albedo within
the latent space which matches basic features of the scene,
like skin tone and hair color. We do not unfreeze θa in
order to prevent baking of unwanted information into the
albedo. After this, we gradually enable the specular radi-
ance (ks = 1) and unfreeze the weights and latent vector
of the specular albedo decoder, θs, zs. At this stage, the
model adjustes the specular albedo and lights to explain re-
flections. Finally, we enable the training of the albedo re-
finement by setting kr = 0.5 and unfreezing the parame-
ters θar to allow for corrections of up to ±0.5 on the base
albedo network aθa,za

. Simultaneously, we freeze the la-
tent of the diffuse albedo decoder, za. During this stage,
the model captures photo-realistic details in the albedo re-
finement field, while avoiding baking shades and reflections
thanks to LReg.Lastly, we let the albedo network be fine-
tuned for the last 50 epochs to make small adjustments to



Figure 2: Scheduling during the appearance factorization decomposition. At the beginning all the network weights and latent
vectors are frozen. The initial learning rate is set to 5 · 10−4 and the kr and ks parameters to 0.

the global color.

4. Datasets
Prior training. We train the SA-SM and AF-SM on a
non-released dataset [14] made of 3D head scans and cor-
responding posed images from 10,000 individuals with an
average of 6 photos per scene. The scans are low resolution,
incomplete and non-watertight. The dataset is perfectly bal-
anced in gender and diverse in age and ethnicity.
3DFAW. Videos of human heads paired with 3D reconstruc-
tions of the facial area, at two different resolutions. We
select from the low-resolution set the same 10 cases as in
[14], and 17 subjects from the high-resolution set provided
by [4].
H3DS [14]. 23 human head scenes with multi-view posed
images, masks, and full-head 3D textured scans. The
dataset consists of 13 men and 10 women.
Wikihuman Project. We evaluate our appearance factor-
ization method on the Digital Emily scene [1]. In our com-
parisons we only use the diffuse and specular albedos, and
the frontal photo, as in [4].

5. Evaluation details
5.1. 3D reconstruction

The predicted 3D reconstruction for all methods is
roughly aligned with the ground truth mesh using manu-
ally annotated landmarks, and then refined with rigid ICP
[3]. Surface error is computed as the unidirectional Cham-
fer distance from the reconstruction to the ground truth. For
a fair comparison, all methods are evaluated on the same
face region. This is defined by cutting both the reconstruc-
tions and the ground truth using a sphere of 95 mm radius
and with center at the tip of the nose of the ground truth
mesh, and refining the alignment with ICP.

5.2. Appearance factorization

We first find the intersection mask among all the evalu-
ated methods. We use it to mask the final render, as well as
diffuse and specular albedos provided by each baseline, in

order to provide results evaluated on the same pixels. Due
to the existing scale ambiguity in inverse rendering prob-
lems, for each method we apply a scaling that minimizes
the mean squared error channel-wise between the ground
truth and the predicted images.

6. Additional results
We provide extended results on our ablation study in fig-

ures 3, 4. Figure 5 shows additional results on our 3D recon-
struction method. In figures 6 and 7 we provide extended
results on our appearance factorization method. Figure 8
shows extended relightning results and in figure 9 we pro-
vide diverse results in the Celeb-HQ dataset.



Figure 3: Ablation study: We ablate the 3D reconstruction method. Extension of Figure 4a from the main paper.



Figure 4: Ablation study: We ablate the appearance factorization method on 4 subjects from the H3DS dataset. The 1st and
4th columns correspond to (b.1), the 2nd and 5th columns to (b.2) and the 3rd and 6th columns to (b.3). Extension of Figure
4b from the main paper.



Figure 5: Single-view 3D reconstruction: Subjects from 3DFAW dataset [13]. Comparison: Feng 2021 [5], Dib 2021 [4],
Ramon 2021 [14], SIRA (ours). Extension of Figure 5 from the main paper.



Figure 6: Appearance factorization: 16 subjects from H3DS [14] dataset. Input images (5th and 10th rows) are decomposed
into diffuse albedo (1st and 6th rows), diffuse radiance (2nd and 7th rows), specular radiance (3rd and 8th rows), and final
render (4th and 9th rows). Extension of Figure 7 from the main paper.



Figure 7: Appearance factorization: 18 subjects from 3DFAW [13] dataset. Rows 1-5 are from the low resolution subset
and rows 6-10 are from the high resolution one. Input images (5th and 10th rows) are decomposed into diffuse albedo (1st
and 6th rows), diffuse radiance (2nd and 7th rows), specular radiance (3rd and 8th rows), and final render (4th and 9th rows).
Extension of Figure 7 from the main paper.



Figure 8: Relighting of inverse-rendered scenes. Subjects from the H3DS dataset. Rows 1-9 are relightings from diferent
subjects. Row 10 is the aproximation with 128 Spherical Gaussians (SG) of different environment maps. Extension of Figure
8 from the main paper.



Figure 9: Appearance factorization: 18 subjects from Celeb-HQ [9] dataset. Input images (5th and 10th rows) are decom-
posed into diffuse albedo (1st and 6th rows), diffuse radiance (2nd and 7th rows), specular radiance (3rd and 8th rows), and
final render (4th and 9th rows).
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