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1. Analysis on SSL Object Detection

In the main paper, we demonstrate the high correla-
tion between class-level confidence of unlabeled data and
test accuracy in 3D SSL classification task (line 100 to
104). Therefore, we hypothesize that class-level confidence
of unlabeled data can be utilized to estimate learning sta-
tus. To validate the generality of this correlation, we uti-
lize 3DIoUMatch to conduct 3D SSL object detection ex-
periment in SUN-RGBD dataset with 5 percent dataset as
shown in the Fig 1. The results demonstrate that the class-
level confidence also has high correlation with test accuracy
in detection tasks, which supports the generality of our hy-
pothesis.

2. Visualization of SSL Object Detection Re-
sults

To take a deeper look at the prediction results of our
model, we compared the qualitative results of the super-
vised baseline, the 3DIoUMatch [7], and our results. The
supervised baseline VoteNet [3] produces many false pos-
itive predictions due to the very limited labeled data dur-
ing training. The results of 3DIoUMatch are much better
than the supervised baseline but still have many false pos-
itive boxes. Compared to the baseline and 3DIoUMatch,
the quality of our method is much higher and with fewer
false-positive boxes demonstrating the effectiveness of our
method.

2.1. Comparison with Class Imbalanced SSL
Method

Most of current SSL imblanced method resamples based
on data numbers. However, we find that some minority
classes may have better performance than majority classes
due to their low learning difficulty. Sampling based on data
numbers makes the model biased toward those low learning
difficulty classes. Unlike previous method,our re-sampling
strategy directly increases the sampling probability of low
learning status classes to balance the learning status. To fur-
ther show the effectiveness of our method, we compare our
method with recent state-of-the-art method BiS [2] that re-
lies on class cardinality to sample. Table. 1 and Table. 2
indicate that our method still achieves better performance
than BiS in both 3D detection and classification tasks when
only the sampling part is utilized.

ModelNet40 5% ModelNet40 10%
Overall Acc Mean Acc Overall Acc Mean Acc

Baseline 78.9 71.1 85.5 79.4
BiS [2] + Baseline 79.7 72.3 86.1 80.3

Confid-Sample + Baseline 81.0 72.8 86.7 81.1
Ours + Baseline 82.1 74.3 87.8 82.5

Table 1: Comparative studies with state-of-the-art class imbal-
anced SSL method for 3D object classification.

SUN RGB-D 2% SUN RGB-D 5%
mAP @0.25 mAP @0.5 mAP @0.25 mAP @0.5

Baseline 26.8 ± 1.1 10.6 ± 0.5 39.7 ± 0.9 20.6 ± 0.7
BiS [2] + Baseline 29.2 ± 0.7 11.5 ± 0.4 41.5 ± 1.1 22.4 ± 0.8

Confid-Sample + Baseline 31.9 ± 0.9 11.9 ± 0.7 42.4 ± 0.9 23.1 ± 0.6
Ours + Baseline 32.7 ± 0.3 13.5 ± 0.4 43.1 ± 0.6 24.2 ± 0.5

Table 2: Comparative studies with state-of-the-art class imbal-
anced SSL method for 3D object detection.
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Figure 1: The results analysis of 3DIoUMatch trained in
SUN-RGBD dataset with 5% labeled data. It indicates that
the class-Level confidence has high correlation with test ac-
curacy of each class in 3D SSL detection task.

3. Comparison with Our Method and Dash

Dash [9] proposed a dynamic threshold method based
on cross entropy lose for all classes. However, the Latest
SSL SOTA method FlexMatch [10] has demonstrated the
benefit of class-level dynamic thresholding, which not only
fully utilizes a large number of unlabeled data, but takes into
account each class’s learning status. Our method is inspired
by FlexMatch and utilize class-level confidence to obtain
dynamic threshold for each class. To further demonstrate
the benefit of class-level threshold, we compare our method
with Dash. Table. 3 shows that Dash only improves limited
performance compared to baseline and our method achieves
better performance than Dash in 3D tasks when only the
dynamic threshold part is utilized.

ModelNet40 10% SUN RGB-D 5%
Overall Acc Mean Acc mAP @0.25 mAP @0.5

Baseline 85.5 79.4 39.7 ± 0.9 20.6 ± 0.7
Dash [38] + Baseline 85.9 80.1 40.5 ± 0.7 21.0 ± 0.6

Confid-Threshold + Baseline 86.9 81.7 42.0 ± 0.8 22.8 ± 0.5
Ours + Baseline 87.8 82.5 43.1 ± 0.6 24.2 ± 0.5

Table 3: Comparative studies with Dash.

4. Comparison with Our Method and Flex-
Match

To utilize more unlabeled data at the early stage of the
training, the Flexmatch [10] proposes a threshold warm-
up strategy, which decreases the threshold according to the
number of unused unlabeled data. However, due to the high
learning difficulty of 3D data, a large number of unlabeled
data remains unused during the training, which decreases
the dynamic threshold of each class when FlexMatch is
used. Furthermore, FlexMatch adjusts the threshold of each
class according to the pseudo-labels numbers for each class.
It works well for class-balanced dataset, but in commonly

used 3D data [1, 6, 5, 8], the numbers of labeled data in each
class is long-tail and thus the numbers of high confidence
pseudo-labeled data is also tend to be long-tail. For exam-
ple, in ModelNet40, in ModelNet40, the label numbers of
airplane and bowl are 563 and 59 separately. Even if the
dynamic threshold filters half pseudo-labels of airplane and
utilizes all pseudo-labels of bowls, the airplane’s selected
unlabeled data numbers are at least four times larger than
the bowl’s selected unlabeled data numbers. This makes
the threshold value of airplane much larger than the bowl
in FlexMatch. Hence, as demonstrated in Fig. 3a, utilizing
FlexMatch generates low and significantly variant (long-
tail) thresholds, which introduces much noise, especially for
those minority classes, and thus achieves unsatisfied perfor-
mances in 3D tasks. Unlike FlexMatch adjusting thresh-
olds based on pseudo-label numbers, our method utilizes
class-level confidence to adjust dynamic thresholds. As
shown in the Fig. 3b our method produces appropriate and
balanced dynamic thresholds, even when dataset is imbal-
anced. Hence, our method boosts the efficiency of utiliz-
ing unlabeled data without introducing much noise and have
more generality than FlexMatch.

5. Per-class Accuracy for Classification
To understand the performance of our method on each

class in the 3D SSL classification task, we report per-class
accuracy on ScanObjectNN with 2 percent labeled data and
ModelNet40 with 10 percent labeled data, respectively. The
Table 6 indicates that in most classes, our method has bet-
ter performance than FixMatch [4] and FlexMatch [10] .
Moreover, In low learning status classes, the FlexMatch
even degrades the performance of FixMatch due to the noise
brought by low thresholds. Table 7 shows that in high learn-
ing status classes, performances of FixMatch, FlexMatch,
and our method are similar. In low learning status classes,
our method outperforms the FixMatch and FlexMatch by a
large margin. This demonstrates our method’s capability in
improving low learning status classes and re-balance net-
work’s learning statuses.

6. Per-class Accuracy for Detection
To understand the performance of our method on each

class in the 3D SSL detection task, we report per-class ac-
curacy on SUN RGB-D with 2 percent labeled data and
ScanNet with 5 percent labeled data, respectively. From
Table 4 and 5 we can find that in most classes, our method
has better performances than 3DIoUMatch [7] and back-
bone VoteNet [3].

7. Result Analysis and Discussion
To take a deeper look at how our model improves the

performance, we conduct analysis about the results of our



Figure 2: Detection results comparison between the supervised baseline VoteNet [3], 3DIoUMatch [7], and our method.

(a) (b)

Figure 3: (a) Thresholds of our method for each class in the last epoch under ModelNet40 dataset with 10 percent labeled data. (b)
Thresholds of FlexMatch for each class in the last epoch. The FlexMatch leads to long-tail thresholds, which introduces much noise in
pseudo labels and thus degrades the performance. Thresholds of our method is appropriate and balanced, which boosts the efficiency of
utilizing unlabeled data.

bathtub bed bookshelf chair desk dresser nightstand sofa table toilet
mAP@0.25

VoteNet [3] 52.8 28.8 24.8 48.1 21.5 9.0 0.3 2.8 0.8 24.4
3DIoUMatch [7] 60.1 33.5 36.5 55.9 36.2 6.7 0.3 15.9 3.6 32.5

Ours 62.8 30.3 32.6 58.9 54.2 10.9 0.8 22.4 3.8 47.7
mAP@0.5

VoteNet [3] 16.7 4.1 7.1 14.8 3.1 0.4 0 0.3 0.2 4.4
3DIoUMatch [7] 20.0 9.7 18.8 30.8 5.1 0.4 0 0.5 0.8 10.8

Ours 25.3 8.7 19.3 34.8 2.2 1.1 0 9.4 1.2 24.2

Table 4: Per-class performance comparison for the 3D object detection task with the state-of-the-art semi-supervised learning methods on the SUN RGB-D
dataset with 2 percent labeled data.

model and compare with FixMatch, which uses a fixed
threshold 0.90 and FlexMatch. We calculated the aver-
age class-level confidence of FixMatch, FlexMatch, and our

method on ModelNet40 datasets.

Fig. 4a shows that the class-level confidence of FixMatch
model is imbalanced and relatively lower. This is prob-



cab bed chair sofa table door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn
mAP@0.25

VoteNet [3] 12.5 65.9 70.2 69.2 37.6 14.0 8.5 15.6 0.5 10.0 48.2 16.8 20.2 20.6 72.1 28.1 44.4 8.6
3DIoUMatch [7] 27.0 71.5 78.4 72.3 48.0 22.9 17.8 14.1 1.6 40.0 51.6 25.0 29.8 43.6 81.7 33.5 75.1 16.0

Ours 24.6 69.6 79.0 73.6 49.1 18.5 16.5 23.9 3.5 41.7 62.5 32.3 33.6 44.1 93.2 33.8 78.6 16.3
mAP@0.5

VoteNet [3] 0.1 50.5 34.3 37.7 16.1 2.7 1.2 5.3 0 1.2 13.1 0.5 6.7 0 49.0 8.3 27.5 0.9
3DIoUMatch [7] 3.2 57.0 56.1 53.2 29.5 8.6 4.9 4.7 0 2.1 28.3 3.1 15.7 7.3 59.8 6.2 60.9 3.6

Ours 4.1 56.6 56.9 50.9 30.7 6.2 4.2 8.3 0 3.2 31.6 11.1 23.2 7.6 60.0 9.0 62.9 4.6

Table 5: Per-class performance comparison for the 3D object detection task with the state-of-the-art semi-supervised learning methods on the ScanNet
dataset with 5 percent labeled data.

bag bin box cabinet chair desk display door
FixMatch [4] 2.4 41.7 14.3 49.5 83.1 12.7 52.5 94.8
FlexMatch [10] 1.1 36.7 0.5 49.5 85.9 3.3 45.1 97.1

Ours 12.1 42.7 12.8 63.4 86.4 6.0 66.7 95.7
shelf table bed pillow sink sofa toilet

FixMatch [4] 38.6 41.9 46.4 29.5 41.7 39.5 10.6
FlexMatch [10] 35.7 61.1 76.3 3.9 51.2 50.5 2.6

Ours 41.5 55.9 60.9 34.8 53.7 87.6 12.9

Table 6: Per-class performance comparison for the 3D object classification task with the state-of-the-art semi-supervised learning methods on the ScabOb-
jectNN dataset with 2 percent labeled data.

airplane bathtub bed bench bookshelf bottle bowl car chair cone
FixMatch [4] 100 78 99 65 98 95 85 94 98 100
FlexMatch [10] 100 62 99 60 97 97 90 99 100 100

Ours 100 76 98 65 98 96 86 98 98 95
cup curtain desk door dresser flower pot glass box guitar keyboard lamp

FixMatch [4] 30 55 81 80 88 20 91 99 95 65
FlexMatch [10] 40 50 73 85 76 25 91 100 100 65

Ours 50 70 74 90 83 30 92 100 100 85
laptop mantel monitor night stand person piano plant radio range hood sink

FixMatch [4] 100 92 95 44 65 85 85 50 85 60
FlexMatch [10] 100 93 99 47 75 93 80 60 72 80

Ours 100 93 99 53 75 95 78 60 86 75
sofa stairs stool table tent toilet tv stand vase wardrobe xbox

FixMatch [4] 100 65 80 90 95 99 61 81 35 75
FlexMatch [10] 98 90 55 91 95 99 85 88 25 65

Ours 99 90 70 90 95 99 82 85 45 77

Table 7: Per-Class performance comparison for the 3D object classification task with the state-of-the-art semi-supervised learning methods on the Mod-
elNet40 dataset with 10 percent labeled data. In high learning status classes, performances of FixMatch, FlexMatch, and our method are similar. In low
learning status classes, our method outperforms the FixMatch and FlexMatch by a large margin.

(a) FixMatch average confidence (b) FlexMatch average confidence. (c) Our method average confidence.

Figure 4: The comparison of unlabeled data class-level confidence between FixMatch and our method in ModelNet40 datasets trained
with 10 percent labeled data. The result demonstrates that our method not only improves the learning status of each class but makes the
learning status more balanced.

ably caused by the fixed threshold since it does not con-
sider the learning difficulty and status of different classes.
The Fig. 4b shows that although the FlexMatch improve
confidence of some classes, the class-level confidence still
remains imbalanced. This is because FlexMatch is not
designed for data-imbalanced dataset and thus cannot re-
balance the learning status. The class-level confidence of
our proposed method is shown in the Fig. 4c. Benefiting

from the dynamic threshold and re-sampling strategy, our
proposed method not only improves classes’ average con-
fidence but also makes learning status balanced compared
to the FixMatch and FlexMatch. This analysis confirms the
advantage of using the dynamic threshold for each class.
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