
A. Image reconstruction from style vectors
To evaluate the safety of the style vectors, we train a

generator from a SOTA GAN [32] to reconstruct the image
from its style vector. We train the generator until the valida-
tion loss converges sufficiently. The best model is selected
with the highest validation average PSNR. The results are
shown in Figure 5. We consider three scenarios:

• First, intra-client reconstruction (train and test on data
from the same client). Note that this scenario is impos-
sible in FL unless the client has already leaked their
data. This is an extreme case to examine the best re-
sults the generator can achieve.

In Figure 5a, the diagonal image pairs show intra-client
reconstruction results on PACS, and the bottom two
pairs show intra-client reconstruction results on Came-
lyon17. We can see that the generator fails on intra-
client reconstruction on the Camelyon17 dataset. For
PACS, although the generator is possible to overfit the
data within a single domain, this is only vulnerable
when a large amount of data is leaked.

• Second, inter-client reconstruction (malicious client).
It is possible that there exists a malicious client who
wants to use its own data to reconstruct the images of
other clients from the shared style vectors. From the
results, we can hardly infer any content information
except for overall color. Although (P, Photo) shows a
rough shape of GT, it belongs to the intra-client sce-
nario, which violates the FL setting.

In Figure 5a, image pairs that are not lie at diagonal
line are inter-client reconstruction results. The figure
shows that the inter-client reconstruction fails on both
PACS and Camelyon17 datasets.

• Third, third-party reconstruction (pre-trained on large-
scale images). More generally, if an outside attacker
has compromised the style vectors and wants to re-
construct the images from the shared style vectors,
they can train the reconstructor on a large-scale image
dataset.

We train the generator on ImageNet and visualize the
reconstruction results in Figure 5b. According to the
results, the pre-trained generator totally fails to recon-
struct the target images.

Therefore, in the real FL scenarios, one can hardly re-
construct the original images merely from the shared style
vectors.

B. Time cost of extra computation
The extra computation time cost of our method is very

low. Specifically, for the overall style computation, it takes

Setting Unseen client AverageP A C S
FedAvg (AISTATS’17) [34] 95.21 82.91 78.80 73.99 82.73

Jigen (CVPR’19) [4] 95.63 83.25 81.10 71.95 82.98
RSC (ECCV’20) [17] 94.55 83.20 79.99 72.79 85.31

MixStyle (ICLR’21) [47] 96.47 86.89 81.06 76.81 82.63
FedDG (CVPR’21) [33] 95.93 84.28 79.44 73.89 83.89

CCST (Overall,K=3) 96.65 88.33 78.20 82.90 86.52

Table 3: Compare the results of our CCST (Overall, K=3)
with baselines that are trained with local iterations=3.

7 seconds for 2048 images with 256×256 resolution. For
image stylization, it takes 54 seconds to stylize 2048 im-
ages of 256×256 resolution under either “Overall, K=3” or
“Single, K=3” mode. The results are tested on an NVIDIA
RTX 2080Ti GPU using PyTorch 1.11.0 with CUDA11.

C. Training budget
To be fairer in the training budget, we increase the local

training iterations of baselines methods from 1 to 3 to com-
pare with our overall (K=3) method. The results are shown
in Table 3. According to the results, more local iterations
do not lead to obvious accuracy improvement for baseline
methods, and our CCST (Overall, K=3) still outperforms all
the baseline methods.

D. Visualization of the FFT amplitude ex-
change results on the PACS

As shown in Figure 6, we visualize the results after the
FFT amplitude exchange using single and overall amplitude
on the PACS dataset [24]. We can see that the FFT ampli-
tude exchange does not make a noticeable change to appear-
ance or artistic style but only adds to some spatial repetitive
texture and color patterns. This could be one of the reasons
why FFT cannot outperform our CCST method. Because
in the PACS dataset, we have large domain gaps such as
that between photos and sketches. Simple changes in color,
brightness, or background texture cannot make up the gap
very well, while AdaIN style transfer can perform better by
producing visually plausible artistic style transfer.

E. AdaIN style transfer vs FFT amplitude ex-
change

In FedDG [33], the amplitude information in the fre-
quency space of an image can also serve as a kind of style,
while we utilize the IN statistics of each feature channel as
style information. To explore the differences between the
FFT [35] amplitude and IN statistics as style, we made a
thorough comparison under our augmentation framework.
The amplitude exchange alone without episodic learning in
FedDG is equivalent to our framework with the setting of
the single style when K=1.
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Figure 5: (a) Image reconstruction from the style vectors. (Ground truth, reconstructed image) pairs are shown. For PACS,
the x-axis represents which domain the generator is trained on, the y-axis represents which domain the input style vectors are
from. Diagonal image pairs show intra-client results. For Camelyon17, we show the intra-client reconstruction results only.
The generator is trained with MSE loss. (b) We utilize the ImageNet pre-trained reconstructor to recover the PACS images
from their style vectors. From top to bottom rows are the ground truth images, reconstruction results using generator trained
with MSE loss, and reconstruction results using generator trained with LPIPS loss.
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Figure 6: Visualization of images after the FFT amplitude exchange on the PACS dataset. Similar with Figure 7, we duplicate
the content image if it is the same as the amplitude target image.

We show the comparison results in Table 4. Compared
with our proposed method (using IN statistics as style), the
FFT-based amplitude exchange method consistently per-
forms worse under the same setting except for the setting of
single style when K=3. Moreover, for the FFT-based style,

the overall amplitude 1 of a domain fails to result in better
results than a single image FFT amplitude. In contrast, our
framework has a significant boost when using overall style.

1We compute the overall amplitude by averaging the amplitudes of all
images in this domain.



Table 4: Comparison between using FFT amplitude and IN statistics as style in our proposed cross-client style transfer
framework with single and overall style under different K values. This table reports the performance with varying hyper-
parameters of our framework on the PACS dataset with ResNet50 as the backbone.

Method

CCST (Ours) FFT Amplitude Exchange

P A C S Avg. P A C S Avg.

Single(K=1) 95.75 87.5 74.66 76.56 83.62 96.71 85.69 76.19 73.76 83.09
Single(K=2) 96.77 86.23 75.73 80.12 84.71 96.89 87.16 79.31 74.32 84.42
Single(K=3) 96.65 86.63 74.53 81.85 84.84 96.65 86.87 79.74 77.3 85.14
Overall(K=1) 95.69 86.67 75.85 77.37 83.90 96.89 86.38 78.92 72.36 83.64
Overall(K=2) 96.41 88.72 78.03 80.91 86.02 93.95 79.79 72.18 77.96 80.97
Overall(K=3) 96.65 88.33 78.20 82.90 86.52 95.21 81.25 73.34 80.27 82.52

With the help of our framework, the best result (single, k=3)
of the FFT-based method can have a 2% improvement com-
pared with the original version in FedDG (single, K=1). In
general, our second-best result (overall, K=2) outperforms
the best result of FFT amplitude exchange (single, K=3) by
0.9%; our best result (overall, K=3) outperforms the best
result of FFT amplitude exchange (single, K=3) by 1.4%.

The experiments show that it is only practical to use the
single image amplitude for the FFT amplitude exchange
method. Utilizing the single image style mode makes the
communication cost high due to the uploading and down-
loading of the style bank, leading to inflexibility. However,
our CCST method can flexibly choose between single im-
age style and overall domain style accordingly, especially
the choice of using overall domain style to decrease the
communication cost.

F. PACS visualization

Figure 7 shows the visual results of cross-client style
transfer with two types of styles. The overall domain style
represents a more general and accurate client style, while
the single image style brings more randomness.

G. Visualization of style transfer results on the
Office-Home

In this section, we show the qualitative results by visu-
alizing images before and after the AdaIN [16]-based style
transfer. In Figure 8, we show images of four different tar-
get domains in the Office-Home dataset [39]. Except for
the art domain, samples from the other three domains show
less domain gap. For each domain, we visualize the gener-
ated images using both random single image style and over-
all domain style. According to our experiment results, the
overall style is usually more effective than using the single
image style. Random single image style sometimes may
choose an image that is not representative for the whole do-
main. For example, in Figure 8, when transferring the clock

image with the Clipart style into real-world style, the styl-
ized image with overall style has a more colorful and repre-
sentative style than that using random single image style.

H. Additional experimental results
We show the results of our CCST with ResNet [13] as the

backbone network on the PACS and Office-Home dataset
in Table 5. For PACS dataset, using ResNet18 (Table 5)
and ResNet50 (Table 2a) as backbone have consistent re-
sults: the overall style with K=3 leads to the best perfor-
mance. When using ResNet18 as the backbone, the im-
provement upon baseline is more significant than that of
using ResNet50.

For CCST results on the Office-Home dataset, besides
K = 1, all other settings outperform the FedAvg in terms
of the average accuracy. To explore the reason for the fail-
ure of CCST with K = 1, we visualize the images with
style transfer as shown in Figure 8. From the visualization
results, we can observe that the domain shift among do-
mains of the Office-Home is smaller than that of the PACS
dataset. For example, the product images collected on web-
sites are similar to the real-world object images taken by a
regular camera. Due to the slight differences between dif-
ferent domain styles and the randomness in single image
style transfer, Single(K=1) achieves a lower accuracy than
FedAvg on average. However, the overall domain style still
shows a stronger representation capability and only has a
minor performance gap compared with FedAvg. Overall,
our best CCST results outperform the FedAvg baseline even
with less domain shift in the Office-Home dataset.
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Figure 7: Visualization of stylized images on PACS. Note that if the content image is from the same domain of the style
statistics, we directly copy the content image to the augmented dataset instead of transferring the same style to it.

Real-world ProductClipart Art

Clipart

Real-world

Product

Art

Real-world ProductClipart Art

Original Single image style Overall domain style

Figure 8: Visualization of the AdaIN stylized images on the OfficeHome dataset. Note that if the content image is from the
same domain as that of style statistics, we directly copy the content image to the augmented dataset instead of transferring
the same style to it.



Table 5: Results of our CCST with different image style types and K values under PACS and Office-Home dataset. The
backbone network is ResNet18. Each column represents a single unseen target client.

Method

PACS Office-Home

P A C S Avg. A C P R Avg.

FedAvg [34] 91.44 75.98 73.21 61.08 75.43 60.08 45.59 69.48 72.82 61.99
Single(K=1) 94.07 77.73 70.99 72.82 78.90 55.14 43.64 68.58 68.92 59.07
Single(K=2) 95.27 79.05 72.82 77.88 81.26 57.61 48.68 71.17 71.44 62.23
Single(K=3) 94.79 80.27 71.72 80.86 81.91 58.44 45.70 72.30 71.56 62.00
Overall(K=1) 94.19 79.88 72.14 75.41 80.41 59.47 47.88 67.91 70.87 61.53
Overall(K=2) 93.95 79.79 72.18 77.96 80.97 57.82 50.52 71.28 70.99 62.65
Overall(K=3) 95.21 81.25 73.34 80.27 82.52 59.05 50.06 72.97 71.67 63.44




