Frequency-Aware Self-Supervised Monocular Depth Estimation Supplementary Material

Xingyu Chen¹ Thomas H. Li^{1,2,3} Ruonan Zhang¹ Ge Li \boxtimes^1

¹School of Electronic and Computer Engineering, Peking University ²Advanced Institute of Information Technology, Peking University ³Information Technology R&D Innovation Center of Peking University

cxy@stu.pku.edu.cn tli@aiit.org.cn zhangrn@stu.pku.edu.cn geli@ece.pku.edu.cn https://github.com/xingyuuchen/freq-aware-depth

1. Pseudo-code of Ambiguity-Masking

The overall algorithm of the proposed Ambiguity-Masking is summarized as Alg. 1. Please refer to our Github repository for full implementation.

Algorithm 1 Extract Ambiguities for Photometric Loss

- **Input:** target image I_t , source images I_{t+n} , indices of source images src_ids , reconstructed images \tilde{I}_{t+n} , photometric errors of all source images \mathcal{L}
- **Output:** A_t^{pe} : ambiguity mask of the final photometric error
- 1: $A_t \leftarrow \text{EXTRACTAMBIGUITYFORIMAGE}(I_t);$
- 2: $reproj_ambiguities \leftarrow list;$
- 3: for all n in $src_i ds$ do
- 4: $\mathcal{A}_{t+n} \leftarrow \text{EXTRACTAMBIGUITYFORIMAGE}(I_{t+n});$
- 5: $\tilde{\mathcal{A}}_{t+n} \leftarrow$ bilinear sample \mathcal{A}_{t+n} subject to \otimes_{t+n} ; // to get which pixels in reconstructed \tilde{I}_{t+n} are from the ambiguous pixels in source I_{t+n} .
- 6: append $\tilde{\mathcal{A}}_{t+n}$ to reproj_ambiguities;
- 7: end for
- 8: min_idx ← argmin(L); // we adopt min. reprojection loss from [12].
- A'_t ← reproj_ambiguities[min_idx]; // to gather ambiguity value adopted in the final loss map.
- 10: $\mathcal{A}_t^{max} \leftarrow \max(\mathcal{A}_t, \mathcal{A}'_t); // \text{ as Eq. 13.}$

```
11: \mathcal{A}_t^{pe} \leftarrow \mathcal{A}_t^{max} < \delta; // as Eq. 14.
```

- 12: return \mathcal{A}_{t}^{pe} ;
- 13: **procedure** EXTRACTAMBIGUITYFORIMAGE(*I*)
- 14: $\mathcal{F} \leftarrow \text{compute frequency map of } I; // \text{ as Eq. 9.}$ 15: $\mu \leftarrow \nabla_{u+} \cdot \nabla_{u-} < 0 \mid | \nabla_{v+} \cdot \nabla_{v-} < 0; // \text{ as Eq. 10.}$
- 16: $\mathcal{A} \leftarrow \mu \mathcal{F};$
- 17: return \mathcal{A} ;
- 18: end procedure

2. Further Consideration on the Two Modules

We let the Ambiguity-Masking module take input from the Auto-Blur because we want the high-freq regions of input images to be first processed by Auto-Blur before extracting ambiguities. The reason for this lies in the fact that without smoothing the high-frequency areas, the Ambiguity-Masking would wrongly filter out almost all pixels in high-frequency areas as the *dense thin* objects inside are likely to be misjudged as ambiguous colors, disabling them from participate in training.

3. Full Numbers of Hyper-params Ablation

In this section, we show full numbers of ablations of all hyper-parameters in our methods, as reported in Tab. 1. We then give detailed analyses on each one of them.

If δ is too small, the Amb.-masking will wrongly exclude some non-ambiguous pixels, *e.g.*, the long wall from near to far could also satisfy the constraint of gradual color transition, but it does not belong to the problem demonstrated in Fig. 1. If δ is too large, boundaries with little color difference will be missed.

For kernel size s in Auto-Blur, if we decrease s, the receptive field could not be effectively enlarged when measuring pixel similarity. If we increase s too much, the central pixel's contribution (its own characteristic color) is reduced since the Gaussian distribution gets 'shorter' and 'wider'.

For threshold λ , decreasing λ would wrongly smooth the texture-less regions, as the already-weak supervision signal on them will be further weakened. Increasing λ too much would miss some pixels in high-freq regions which could confuse the photometric loss as illustrated in Fig. 2.

For the percentage threshold η of high-frequency pixels in Auto-Blur, when η is too small, not only the textureless regions but also some object boundary areas which does not belong to 'high-frequency area' would be wrongly smoothed. When η is too large, the same as λ , our Auto-

Hyper-parameter	Value	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta {<} 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
δ	$\begin{array}{c c} 0.2 \\ 0.3 \\ 0.4 \end{array}$	0.113 0.112 0.113	0.884 0.834 0.864	4.814 4.746 4.757	0.190 0.189 0.190	0.878 0.880 0.879	0.960 0.961 0.960	0.982 0.982 0.982
s	7 9 11	0.112 0.112 0.113	0.836 0.834 0.868	4.753 4.746 4.782	0.190 0.189 0.189	0.878 0.880 0.877	0.961 0.961 0.960	0.981 0.982 0.982
λ	$\begin{array}{c c} 0.15 \\ 0.20 \\ 0.25 \end{array}$	0.113 0.112 0.113	0.844 0.834 0.881	4.814 4.746 4.797	0.192 0.189 0.191	0.879 0.880 0.877	0.959 0.961 0.959	0.982 0.982 0.981
η	50 60 70	0.113 0.112 0.114	0.860 0.834 0.887	4.804 4.746 4.839	0.192 0.189 0.190	0.875 0.880 0.878	0.959 0.961 0.960	0.981 0.982 0.982

Table 1. Ablations on all hyper-parameters.

Figure 1. High-resolution qualitative comparisons of Monodepth2 [12] with and w/o our proposed methods (input from CityScapes [3]).

Blur would be too strict, *i.e.* miss to smooth some pixels in high-frequency areas which could confuse the photometric loss.

4. Full-Resolution Qualitative Results

We show more full-resolution qualitative depth predictions in Fig. 1 (CityScapes) and Fig. 2 (KITTI).

Figure 2. High-resolution qualitative comparisons of *Depth-Hints* [32] and *Monodepth2* [12] with and w/o our proposed methods (input from KITTI [10]).