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1. Pseudo-code of Ambiguity-Masking

The overall algorithm of the proposed Ambiguity-
Masking is summarized as Alg. 1. Please refer to our
Github repository for full implementation.

Algorithm 1 Extract Ambiguities for Photometric Loss
Input: target image It, source images It+n, indices of

source images src ids, reconstructed images Ĩt+n,
photometric errors of all source images L

Output: Apet : ambiguity mask of the final photometric er-
ror

1: At ← EXTRACTAMBIGUITYFORIMAGE(It);
2: reproj ambiguities ← list;
3: for all n in src ids do
4: At+n ← EXTRACTAMBIGUITYFORIMAGE(It+n);
5: Ãt+n ← bilinear sample At+n subject to ⊗t+n; //

to get which pixels in reconstructed Ĩt+n are from the
ambiguous pixels in source It+n.

6: append Ãt+n to reproj ambiguities;
7: end for
8: min idx ← argmin(L); // we adopt min. reprojection

loss from [12].
9: A′t ← reproj ambiguities[min idx]; // to gather am-

biguity value adopted in the final loss map.
10: Amaxt ← max(At, A′t); // as Eq . 13.
11: Apet ← Amaxt < δ; // as Eq. 14.
12: return Apet ;
13: procedure EXTRACTAMBIGUITYFORIMAGE(I)
14: F ← compute frequency map of I; // as Eq. 9.
15: µ ← ∇u+ · ∇u− < 0

∣∣∣∣ ∇v+ · ∇v− < 0; // as
Eq. 10.

16: A← µF ;
17: return A;
18: end procedure

2. Further Consideration on the Two Modules

We let the Ambiguity-Masking module take input from
the Auto-Blur because we want the high-freq regions of
input images to be first processed by Auto-Blur before
extracting ambiguities. The reason for this lies in the
fact that without smoothing the high-frequency areas, the
Ambiguity-Masking would wrongly filter out almost all
pixels in high-frequency areas as the dense thin objects in-
side are likely to be misjudged as ambiguous colors, dis-
abling them from participate in training.

3. Full Numbers of Hyper-params Ablation

In this section, we show full numbers of ablations of all
hyper-parameters in our methods, as reported in Tab. 1. We
then give detailed analyses on each one of them.

If δ is too small, the Amb.-masking will wrongly exclude
some non-ambiguous pixels, e.g., the long wall from near to
far could also satisfy the constraint of gradual color transi-
tion, but it does not belong to the problem demonstrated in
Fig. 1. If δ is too large, boundaries with little color differ-
ence will be missed.

For kernel size s in Auto-Blur, if we decrease s, the re-
ceptive field could not be effectively enlarged when measur-
ing pixel similarity. If we increase s too much, the central
pixel’s contribution (its own characteristic color) is reduced
since the Gaussian distribution gets ‘shorter’ and ‘wider’.

For threshold λ, decreasing λwould wrongly smooth the
texture-less regions, as the already-weak supervision signal
on them will be further weakened. Increasing λ too much
would miss some pixels in high-freq regions which could
confuse the photometric loss as illustrated in Fig. 2.

For the percentage threshold η of high-frequency pixels
in Auto-Blur, when η is too small, not only the texture-
less regions but also some object boundary areas which
does not belong to ‘high-frequency area’ would be wrongly
smoothed. When η is too large, the same as λ, our Auto-
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Hyper-parameter Value Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

δ
0.2 0.113 0.884 4.814 0.190 0.878 0.960 0.982
0.3 0.112 0.834 4.746 0.189 0.880 0.961 0.982
0.4 0.113 0.864 4.757 0.190 0.879 0.960 0.982

s
7 0.112 0.836 4.753 0.190 0.878 0.961 0.981
9 0.112 0.834 4.746 0.189 0.880 0.961 0.982
11 0.113 0.868 4.782 0.189 0.877 0.960 0.982

λ
0.15 0.113 0.844 4.814 0.192 0.879 0.959 0.982
0.20 0.112 0.834 4.746 0.189 0.880 0.961 0.982
0.25 0.113 0.881 4.797 0.191 0.877 0.959 0.981

η
50 0.113 0.860 4.804 0.192 0.875 0.959 0.981
60 0.112 0.834 4.746 0.189 0.880 0.961 0.982
70 0.114 0.887 4.839 0.190 0.878 0.960 0.982

Table 1. Ablations on all hyper-parameters.

CityScapes [3] Input MD2 [12] MD2 + Ours

Figure 1. High-resolution qualitative comparisons of Monodepth2 [12] with and w/o our proposed methods (input from CityScapes [3]).

Blur would be too strict, i.e. miss to smooth some pixels in
high-frequency areas which could confuse the photometric
loss.

4. Full-Resolution Qualitative Results
We show more full-resolution qualitative depth predic-

tions in Fig. 1 (CityScapes) and Fig. 2 (KITTI).



KITTI [10] Input Depth-Hint [32] Depth-Hint + Ours

MD2 [12] MD2 + Ours

Figure 2. High-resolution qualitative comparisons of Depth-Hints [32] and Monodepth2 [12] with and w/o our proposed methods (input
from KITTI [10]).
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