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1. Algorithm for Knowledge Graph Extension

In this section, we describe the detailed procedures for
extending the commonsense knowledge graph (KG). We
start with the set of 150 object labels from Visual Genome
[1] as our initial concept entities. After training a BLINK
model, we feed the object labels to the BLINK model to
obtain a new set of entities linked to the Wikidata entities
with their edges. Because each entity on Wikidata has mul-
tiple neighbors, we randomly select one neighbor in our
construction to prevent the graph from becoming unwieldy.
The output from our Wikidata knowledge graph consists of
triplets whose format is similar to that of ConceptNet (e.g.,
⟨“flower”, “/r/PartOf”, “plant part”⟩). In our final Wikidata
edges, the head entities are strictly on-scene, but the tail en-
tities, such as “flower part” can be off-scene. The above
entity linking process is shown between lines 1 and 4 of
Algorithm 1 below.

With our combined ConceptNet [3] and Wikidata [4]
edges, we now construct the commonsense knowledge
graph. Because ConceptNet [3] uses WordNet [2] synset
prefixes as IDs, we first manually link each off-scene tail
entity to WordNet [2] and use its WordNet prefix to query
its associated ConceptNet entities [3]. We then reconstruct
the ConceptNet and Wikidata knowledge bases by initial-
izing and populating the combined edge matrix with the
union of the two edge sets. We use their combined and
sorted ConceptNet IDs as the index. There are four types
of directed edges in the graph: entities to entities (e2e),
predicates to predicates (p2p), entities to predicates (e2p),
and predicate to entities (p2e). Furthermore, as is the case
in GB-Net [6], we consider some ConceptNet edge types
such as “/r/PartOf” as single-directional edges and others
like “/r/RelatedTo” as two-directional edges. For the single-
directional edges, each direction counts as an edge type
in the commonsense knowledge graph. However, a two-
directional edge only counts as one. For example, the two
directions of “/r/PartOf” are edge types 2 and 3, respec-

tively. In contrast, the two directions of “/r/RelatedTo”
share the edge type 4. The product is the combined com-
monsense knowledge graph. The complete algorithm for
this extension is shown in Algorithm 1.

With our commonsense knowledge graph, we add the
statistical components to the graph. Because the original
statistical priors by Xu et al. [5] are computed on the 150
on-scene entities, we must remap them to include the addi-
tional off-scene entities with trivial values. These statistics
include conditional probabilities between objects, subjects,
and predicates as well as covariance of entities and predi-
cates. The key to remapping the statistics is an index remap-
ping from the original entity order to the new extended one.
We set the off-scene entity statistics to 0 because they do
not appear in the ground truth at all. Lastly, we concatenate
the matrix components into four subgraphs [6]. This full
remapping process is shown in Algorithm 2.



Algorithm 1 Our algorithm to extend GB-Net’s Knowledge
Graph

1: function EXTEND-EBNET(SE, SP, edges)
2: CEon = SE;
3: CP = SP ;
4: E′ = BLINK(CEon);
5: CEwiki = {etail|(ehead, t, etail) ∈ E′};
6: CEext = CE ∪ CEwiki;
7: CEoff = CEext − SE;
8: E = ∅;
9: for c ∈ CEext do

10: wordnet id = synset[c];
11: idcn[c] = query conceptnet(wordnet id);
12: Manually edit edges;
13: NCE = |CEext|+ 1; ▷ With the background class
14: NCP = |CP |+ 1; ▷ With the background class
15: Ee2e = 0 (|Tent2ent| ×NCE ×NCE);
16: Ep2p = 0 (|Tpred2pred| ×NCP ×NCP );
17: Ee2p = 0 (|Tent2pred| ×NCE ×NCP );
18: Ep2e = 0 (|Tpred2ent| ×NCP ×NCE);
19: for (ehead, t, etail) ∈ E ∪ E′ do
20: if {ehead, etail} ⊆ CEext then
21: Eext

e2e [t, idCE [idcn[ehead]], idCE [idcn[etail]]] =
1;

22: Eext
e2e [t, idCE [idcn[etail]], idCE [idcn[ehead]]] =

1;
23: else if {ehead, etail} ⊆ CP then
24: Eext

p2p[t, idCP [idcn[ehead]], idCP [idcn[etail]]] =
1;

25: Eext
p2p[t, idCP [idcn[etail]], idCP [idcn[ehead]]] =

1;
26: else
27: Eext

e2p[t, idCE [idcn[ehead]], idCP [idcn[etail]]] =
1;

28: Eext
p2e[t, idCP [idcn[etail]], idCE [idcn[ehead]]] =

1;
29: return {

Eext
e2e Eext

p2p

Eext
e2p Eext

p2e

}

Algorithm 2 Our algorithm to remap the statistical sub-
graphs and add them to EB-Net

1: function ADD-STATS(CE, CEext, KG, stats)
2: Eext

e2e , E
ext
p2p, E

ext
e2p, E

ext
p2e = KG;

3: Build index mapping im from CEon to CEext; ▷
Both are alphabetically sorted

4: indexoff = index(CEext)− im;
5: stats =

{p(obj|subj), p(subj|obj),
p(subj|pred), p(pred|subj),
p(obj|pred), p(pred|obj),

cov(SE), cov(SP ), word sim}


;

6: for s ∈ stats do
7: sext[im] = s;
8: sext[indexoff ] = 0;
9: return

Eext
e2e ⊕ p(obj|subj)ext⊕

p(subj|obj)ext ⊕ cov(SE)ext ⊕ word simext

Eext
p2p ⊕ cov(SP )ext

Eext
e2p ⊕ p(subj|pred)ext ⊕ p(obj|pred)ext
Eext

p2e ⊕ p(pred|subj)ext, p(pred|obj)ext
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