
Supplementary Material

In this supplementary material, we first provide the defini-
tions for the symbols used in the supplementary material in
Section 1. Then, we walk through the essential background
material for optical flow estimation in Section 2, since it is
one of the feature representations adopted in PWVO. Next,
in Section 3, we provide the link to the source codes of
PWVO, and elaborate on the formulations of the loss func-
tions for depth and flow estimation, as well as the hyperpa-
rameters adopted by PWVO. In Section 4, we explain the
configurations of the data generation workflow. Finally, in
Section 5, we present additional ablation analyses and more
qualitative results to show the effectiveness of PWVO.

1. List of Notations

In this section, we provide the list of notations used
throughout the supplementary material. The symbols and
their descriptions are summarized and explained in Table 1.

2. Background Material

2.1. Optical Flow Estimation

Optical flow estimation is an application domain for
evaluating displacements of pixels between consecutive im-
age frames, and is one of the most crucial areas that have
attracted the attention of computer vision researchers for
many years [1–13]. Due to the rapid advances of deep neu-
ral networks (DNNs), there have been a number of DNN-
based optical flow estimation methods developed in the past
few years. FlowNet [1] was the first convolutional neu-
tal network (CNN) based approach that estimates optical
flow maps in an end-to-end fashion. FlowNet2 [2] adopted
a stacked architecture for iteratively refining optical flow
maps. In addition, the authors in [3, 4, 8, 11] further intro-
duced coarse-to-fine pyramid architectures to apply iterative
refinement. RAFT [10] proposed to build multi-scale four
dimensiontal correlation volumes, and utilize them to itera-
tively update residual flow fields through a gated recurrent
unit (GRU). The authors in [12, 13] employed transformer
based architectures [14] for estimating optical flow maps.
Among them, the method proposed in [12] was the first one
that utilizes transformers for flow estimation. On the other
hand, the method proposed in [13] built their transformer ar-
chitecture on top of RAFT [10], and achieved state-of-the-

art (SOTA) performance. In order to train effective mod-
els capable of correctly estimating optical flow maps, these
methods typically rely on synthetic datasets [15–18] to offer
ground truth annotations to train the models in supervised
manners.

3. Implementation Details
The results presented in this paper are fully reproducible,

and the source codes can be available at:
https://anonymous.4open.science/r/PWVO-5483.

3.1. Loss Function

In this section, we explain the formulations of the two
loss functions L̂Fi and L̂Di in detail. In addition to L̂Ri and
L̂Ti , PWVO is further optimized by L̂Di and L̂Fi = L̂Fx

i +

L̂Fy

i , through the use of three different uncertainty maps
ŨD, ŨFx , and ŨFy . The loss terms can be formulated as
follows:
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where ED(x, y) = ‖ 1
x+ε −

1
y+ε‖ , EF (x, y) = ‖x − y‖,

j stands for the channel index of an uncertainty map, λD

and λF represent the scaling factors, ED and EF denote
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Table 1: The list of notations used in the supplementary material.

Symbol Description

H Height

W Width

k Patch size

K Camera intrinsic matrix

L̂R Rotation loss of the camera in terms of angles (with uncertainty map)

L̂T Translation loss of the camera (with uncertainty map)

L̂F = L̂Fx + L̂Fy Ego flow loss (with uncertainty map)

L̂D Depth loss with (uncertainty map)

ŨR Uncertainty map used in L̂R, where ŨR ∈ RH×W×3

ŨT Uncertainty map used in L̂T , where ŨT ∈ RH×W×3

ŨF = [ŨFx , ŨFy ] Uncertainty map used in L̂Fx + L̂Fy , where ŨFx , ŨFy ∈ RH×W×5

ŨD Uncertainty map used in L̂D, where ŨD ∈ RH×W×3

λD Scaling factor used in L̂D

λF Scaling factor used in L̂F

ζ The mixtures of two distributions for parameter sampling (Eq. (11))

η The first distribution in ζ

τ The second distribution in ζ

µ The mean for the two distributions η and τ

σ1 The standard deviation of η

σ2 The standard deviation of τ

g The power of η (defined in Eq. (11))

ρ The probability of sampling η in ζ

c, d The lower and upper bounds of η (specified in Eq. (11))

f, f̄ The focal length and the normalized focal length in K

Dbg, D̄bg Depth map and normalized depth map for the background

Dobj , D̄obj Depth map and normalized depth map of an object

γ = [Rx,Ry,Rz] Camera rotation angle in x, y, and z axes

ϕ = [Tx,Ty,Tz] Camera translation offset in x, y, and z axes

the distance functions used for calculating the differences
between the ground truth labels and the predictions, and ε
is set to 1e-12 for ED. Please note that the compositions of
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i , ŨTx , ŨTz ], (6)
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where (ŨRx
i , ŨRy

i , ŨRz
i ) and (ŨTxi , ŨTyi , ŨTzi ) can be ob-

tained from ŨRi and ŨTi , respectively. Please note that the
composition of each uncertainty map is different from each
other due to the following reasons: (1) only the rotation of
the x and y axes, as well as the translation of the z axis af-
fects the depth map; (2) the rotation of the x, y, and z axes,
and the translation of the x and z axes affect Fx; and (3) the



rotation of the x, y, and z axes, and the translation of the y
and z axes affect Fy . In practice, Eqs.(8) - (10) are modified
to predict log variance to stablize the training progress and
avoid errors resulted from division by zero. These equations
are reformulated as the following:
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3.2. Hyperparameters

PWVO is implemented using Tensorflow 2.0. All convo-
lutional modules are initialized from scratch with random
weights by using Glorot Normal Initializer. In addition, we
use the Adam optimizer and clip the gradients norm to the
range [-1, 1]. Then, we train and evaluate PWVO on an
NVIDIA RTX 3090 GPU. The hyperparmeters employed
for training our model are presented in Table 2.

Hyperparameters Value

Batch size 100
Learning rate 1e-4
Numbers of epochs 100
Optimizer Adam
Mean for normalizing Ftotal 0
Standard deviation for normalizing input Ftotal 200
k 32
λD 0.25
λF 0.1
δF 20

Table 2: The hyperparamters for training PWVO.

µ σ1 σ2 g ρ c d

f̄ 0.03 0.5 0.08 2.0 0.4 0.0 1.0

D̄bg 0.6 0.2 0.1 2.0 0.5 0.0 1.0

D̄obj 0.6 0.6 0.2 1.5 0.4 0.0 1.0
Rx 0.0 1.5 0.2 2.5 0.15 -9.0 9.0
Ry 0.0 2.0 0.2 2.0 0.15 -9.0 9.0
Rz 0.0 1.5 0.2 2.5 0.15 -8.0 8.0
Tx 0.0 0.4 0.03 2.5 0.15 -0.7 0.7
Ty 0.0 0.25 0.025 2.0 0.20 -0.4 0.4
Tz 0.0 1.80 0.02 2.5 0.15 -5.0 5.0

Table 3: A summary of the parameters used in the proposed data generation
workflow.

4. The Configurations of the Data Generation
Workflow

As discussed in Section 4 of the main manuscript, the
proposed data generation workflow allows a wide range of
synthetic data to be generated. In order to comprehensively
train the proposed PWVO model, a number of hyperparam-
eters are sampled from distributions for generating training
data. These hyperparameters and the parameters for config-
urating their distributions are summarized in Table 3. Sim-
ilar to the approach adopted in [1], the distributions ζ are
defined as the following:

ζ = β ·max(min(sign(η) · |η|g, c), d) + (1−β) · τ, (11)

where β is a Bernoulli random variable. It takes on a one
with probability ρ, and a zero with probability 1− ρ.

According to Eq. (11), the distributions ζ used for sam-
pling our hyperparameters consists of two parts: the for-
mer part involves a power of Gaussian distribution η ∼
N (µ, σ1

2), while the latter part also contains a Gaussian
distribution τ ∼ N (µ, σ2

2) but with a different variance.

Focal length f . With f̄ sampled from the distribution de-
fined above, f can be obtained as follows:

f = f̄ · (fmax − fmin) + fmin, (12)

where [fmin, fmax] are set to [576, 3200] in the proposed
data generation workflow.

Background depth Dbg and object depth Dobj . The
background depth can be obtained by:

Dbg = βbg · (D̄bg · (d2 − d1 + d1)

+ (1− βbg) · h(x, d2, d3) (13)

where βbg is a Bernoulli random variables that takes on
a 1 with probability 0.9 and a 0 with probability 0.1,
(d1, d2, d3) are set to (1, 80, 3200) in our workflow, and the



probability density function h of the uniform distribution is
defined as follows:

h(x, a, b) =

{
1
b−a for a ≤ x ≤ b
0 for x > a or x > b

(14)

where h(x, a, b) is formulated as a probability density func-
tion of uniform distribution with the minimum and the max-
imum equal to a and b, respectively. The object depth Dobj

can then be derived as the following equation:

Dobj = D̄obj ·(Dbg−Dmin)+Dmin,Dmin =
f

fratio
(15)

where fratio is set to 5, 200 in our data generation workflow.

Rotation R and translation T. The hyperparameters
for rotation and translation listed in Table 3 are sampled
from their corresponding distributions, which are defined in
Eq. (11).

5. Additional Experimental Results

5.1. The Impact of Object Noises on the Perfor-
mance of VO

In this section, we ablatively examine the impact of the
noises induced by moving objects on the performance of
VO. To this end, we consider two configurations of syn-
thetic datasets in our ablation analysis: (1) data samples in-
volve the motions of the camera and moving objects, and
(2) only the camera may move. The two configurations
are denoted by subscripts total and ego, respectively. We
train the VONet baseline, PWVO (naive), and PWVO by the
training procedure described in the main manuscript, and
then inspect their performance on the evaluation datasets
under these two configurations. The results are presented
in Table 4. It can be observed that all the methods deliver
better evaluation results on Sintelego than on Sinteltotal,
validating our hypothesis that the noises from moving ob-
jects do affect the performance of VO. In addition, it can
also be observed that in general, the methods trained on
Customtotal exhibit better generalizability on Sinteltotal
than those trained on Customego, as the latter does not
involve any moving object during the training.

5.2. The Influence of the Patch Size k on the Perfor-
mance of PWVO

In this section, we analyze the impact of the patch size
k on the performance of PWVO. As discuss in Section
3.4.2 of the main manuscript, the selection module derives
(γ̃i, ϕ̃i) from (R̃i, T̃i) and (ŨRi (p), ŨTi (p)) through the use
of patches of k× k pixels. This mechanism enables PWVO

Train Eval EPE Rerr Terr

VONet
Customtotal

Sintelego 0.513 0.086 0.057
Sinteltotal 0.909 0.110 0.061

Customego
Sintelego 0.296 0.055 0.038
Sinteltotal 1.373 0.157 0.055

PWVO (naive)
Customtotal

Sintelego 0.526 0.072 0.057
Sinteltotal 0.829 0.091 0.061

Customego
Sintelego 0.259 0.050 0.043
Sinteltotal 1.543 0.196 0.062

PWVO
Customtotal

Sintelego 0.396 0.067 0.039
Sinteltotal 0.626 0.081 0.043

Customego
Sintelego 0.187 0.037 0.022
Sinteltotal 1.490 0.174 0.043

Table 4: An analysis for examining the impact of moving objects on the
performence of VO. Custom and Sintel denote the datasets generated
by our workflow and Sintel, respectively. The subscripts total and ego
represent that the inputs involve Fobj+Fego or Fego only, respectively.

to suppress the influence of noisy regions that contain mov-
ing objects. In this experiment, we compare the perfor-
mances of PWVO with different values of k, which cor-
responds to different fields of view. The results are summa-
rized in Table 5. It can be observed that the choice of k is
crucial to the performance of PWVO. When the path size is
equal toH×W , PWVO simply selects the pixel coordinate
with the lowest uncertainty for its final prediction, without
taking into account the remaining regions in its input obser-
vations. In contrast, when k is set to one, PWVO generates
its final (γ̃i, ϕ̃i) by consideration the pixel-wise predictions
from all the pixel coordinates. The results in Table 5 sug-
gest that when k = 16, PWVO is able to deliver the best
performance on the test set of Sintel. Based on the observa-
tion, this configuration is adopted for all the experiments in
this work.

EPE Rerr Terr
Patch size = H ×W 0.652 0.086 0.034
Patch size = 64× 64 0.654 0.086 0.068
Patch size = 32× 32 (default) 0.626 0.081 0.043
Patch size = 16× 16 0.567 0.075 0.051
Patch size = 1× 1 0.690 0.077 0.041

Table 5: An analysis for comparing the performances of PWVO for differ-
ent choices of k.

5.3. Additional Qualitative Results

In this section, we provide additional qualitative results
of PWVO, which are evaluated on the Sintel [15] in Fig. 1.
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