
Supplementary Materials

1. Training Details

For STL10 dataset [3], we resize all input images to
128 × 128. All methods are trained from scratch for 300
epochs. Drop out rate is set to 0.2 and SGD with momen-
tum equal to 0.9 is used as the optimizer. The initial learning
rate is set to 0.01 which is divided by 5 at the 180th, 240th

and 270th epoch, respectively.
For both VWW [2] and ImageNet [4], the input images

are resized to 224×224. For VWW, all the pooling methods
are trained for 100 epochs, while for ImageNet, we train for
150 epochs. For VWW, we use the SGD optimizer (with
momentum equal to 0.9) with an initial learning rate of
0.005, which is divided by 5 at the 70th and 90th epoch re-
spectively. For ImageNet, we use the same SGD optimizer
with an initial learning rate of 0.05 and cosine annealing.

For COCO dataset [9], we resize all input images to
1333 × 800 by keeping the original ratio and random flip
each input image by 50% probability. Each backbone net-
work is initialized by weight parameters pre-trained on Ima-
geNet dataset [4] and all methods are trained for 12 epochs.
SGD is used as the optimizer and the initial learning rate is
set to 0.02. The momentum is set to 0.9 and weight decay
rate is set to 0.0001.

2. Combine with other CNNs based Backbones

We combine the proposed and other state-of-the-art
pooling methods with different CNNs based backbones,
MobileNetV3 [7] and ResNeXt [14], to illustrate the ro-
bustness of our method, as shown in Table 1. Specifically,
for MobileNetV3, we use the MobileNetV3 Small architec-
ture as the backbone and keep the same stride settings with
[7]. For ResNeXt, we use the ResNeXt18 architecture as the
backbone and keep the same stride settings with [14]. For
these two backbones, different pooling methods are both
embedded into the backbones by inner stage pooling style.
The proposed method still achieves state-of-the-art perfor-
mance when combining with these two backbones.

3. Comparison with Transformer based Meth-
ods

We compare the test accuracy, parameter count, and
FLOPs of our proposed pooling technique with a few
transformer-based models in Table 2, since both use the
multi-head self-attention block to capture non-local fea-
tures for image recognition. While these transformer-based
models reduce the FLOPs and parameter count compared
to traditional transformers [5], it is still difficult to deploy
them in tiny micro-controllers, where the on-chip mem-

Table 1. Comparison on STL10 dataset.

Methods
Metrics

Top 1 (%)

Strided Conv.-MobileNetV3 Small 65.79
LIP-MobileNetV3 Small 67.33
GaussianPool-MobileNetV3 Small 62.90
Ours-MobileNetV3 Small 69.46
Strided Conv.-ResNeXt18 78.31
LIP-ResNeXt18 79.60
GaussianPool-ResNeXt18 79.53
Ours-ResNeXt18 79.96

Table 2. Comparison with Transformer based Methods.

Metrics Top 1 (%) Params FLOPs (G)
LVT [15] 74.8 8.9M 0.900
MobileFormer [1]-26M 64.0 3.2M 0.026
MobileFormer-52M 68.7 3.5M 0.052
MobileFormer-96M 72.8 4.6M 0.096
MobileFormer-151M 75.2 7.6M 0.151
MobileFormer-214M 76.7 9.4M 0.214
MobileFormer-294M 77.9 11.4M 0.294
MobileNetV2 71.9 3.5M 0.303
Ours-MobileNetV2 72.88 3.8M 0.272
Ours-MobileNetV2-0.35x 60.92 0.31M 0.060

ory is typically constrained to few 100 KBs and the flash
memory is typically constrained to only a few MBs. More-
over, our approach surpasses these transformer-based mod-
els in terms of accuracy-memory trade-off. For exam-
ple, the Mobileformer-52M model achieves a top-1 accu-
racy of 68.7% with 3.5M parameters. With similar num-
ber of parameters, our approach achieves a top-1 accuracy
of 72.88%. Our approach achieves 60.92% top-1 accuracy
with only 0.3M parameters (memory footprint can be fur-
ther reduced via 2× down-sampling albeit with ∼9% accu-
racy drop), while the smallest transformer-based model re-
quires 3.2M parameters, which can never fit into tiny micro-
controllers.

4. Qualitative Results for Object Detection
The SSD [10] object detection results with the COCO

dataset [9] evaluated on the ResNet18 [6] backbone for the
different pooling techniques are shown in Fig. 2. Note that
the ground truth bounding boxes have violet colored edges,
while the predicted bounding boxes have orange colored
edges. Our results indicate that our self-attentive pooling
indeed has the best detection precision. Specifically, in the
first, second, and third row, our method detects more people
compared to other pooling techniques, which illustrates the



Figure 1. Visualization results on the COCO dataset of the SSD-ResNet18 network based on LIP pooling and the proposed pooling
techniques. The left portion show the results of LIP, while the right portion show the results of the proposed methods. For each pooling
method, the first column displays the detected results. The second, third and fourth columns render the heatmaps of pooling weights from
different pooling layers. Specifically, Pool Layer 1, 2, 3 are from the shallow, middle and deep layer, respectively, i.e., the sensitive field
becomes larger and larger from Pool Layer 1 to 3.

superiority of our method. In the fourth row and eighth row,
only our pooling technique can detect the pedestrians with
extremely small bounding boxes in the rail track and plat-
form respectively. This might be because our method can
model the long-range dependencies between different ob-
jects, such as between a person and a train. The non-local
self-attention map might pay more attention to the relation-
ship between these objects, even when they appear small,
and thus retain their information when pooling. In the fifth,
sixth, and seventh row, our method achieves higher inter-
section over union (IoU) compared to other methods, which
also can be attributed to a similar line of reasoning.

We also render the heatmaps of pooling weights from
different pooling layers with different sensitive fields, as
shown in Fig. 1. Compared with locality based pooling
method, our method is more concerned about contextual in-
formation in shallow pool layer. When the locality based
pooling method drops the importance of most background
pixels, the proposed method reserves the attention for most
pixels. In middle and deep layer with larger sensitive fields,
the proposed method mainly focuses on the relationship
between different objects or between the objects with the
background, while the locality based pooling method only
focuses on some local regions inner the single object.

5. Model Architectures & Frameworks

MobileNetV2 [13]: A lightweight depthwise convolution
neural network that has gained significant traction for be-
ing deployed on resource-constrained edge devices, such as
mobile devices. It consists of 7 stages with total 17 inverted
residual blocks. The proposed method is combined with
MobileNetV2 by inner stage pooling as described in Sec-
tion 5. We keep the same pooling settings except the first

pooling layer with MobileNetv2 [13], that strides for each
stage are (1, 2, 2, 2, 1, 2, 1), respectively. Specifically, we
use strides (s1, 2, 2, 2, 1, 2, 1), where s1 ∈ {1, 2, 4}. We
also evaluate the pooling methods on MobileNetV2-0.35x
[12], which shrinks the output channel count by 0.35× to
satisy the compute budget of 30M floating point operations
(FLOPs) representing standard micro-controllers.

ResNet18 [6]: A deep convolutional neural network
widely used as backbone for feature extraction on image
recognition and object detection tasks. It consists of 4
stages with total 8 residual blocks. The proposed method
is combined with ResNet18 by outer stage pooling, as de-
scribed in Section 5. We keep the same pooling settings
except the first pooling layer with ResNet18 [6], that strides
for each stage are (1, 2, 2, 2), respectively. Specifically, the
pooling strides used by us are (s1, 2, 2, 2), where s1 ∈
{1, 2, 4}. Note that the three different values of s1 simu-
late the different amount of down-sampling in the initial ac-
tivation maps, capturing models with significantly different
memory footprints.

SSD [10]: A single shot and end-to-end framework with
an excellent memory-accuracy trade-off for standard detec-
tion benchmarks. In this work, we use MobileNetV2 [13]
and ResNet18 as the backbone networks of SSD.

Faster R-CNN [11]: A two-stage object detection frame-
work that consists of a feature extraction, a region proposal,
and a RoI pooling module. For our experiments, we use
ResNet18 as the backbone network for feature extraction,
since MobileNetV2 significantly degrades the test mAP.

6. Dataset Details
STL-10 [3]: The STL-10 dataset is an image recogni-

tion dataset with the same 10 classes as CIFAR-10 [8], but



Figure 2. The results on COCO dataset of the SSD-ResNet18 network based on different pooling techniques. Blue boxes indicate the
ground-truth bounding boxes. Red boxes indicate the detection results.



each class has fewer labeled training examples than CIFAR-
10. In this work, we use an image resolution of 128 × 128
(instead of the traditional 96 × 96) to evaluate the aggres-
sively down-sampling of the initial activation maps, so that
the spatial dimensions do not vanish before applying the
classifier layer(s).

VWW [2]: The Visual Wake Words (VWW) dataset con-
sists of high resolution images that include visual cues to
“wake-up” AI-powered resource-constrained home assis-
tant devices that require real-time inference. The goal of
the VWW challenge is to detect the presence of a human
in the frame (a binary classification task with 2 labels) with
very little resources - close to 250KB peak RAM usage and
model size, which is only satisfied by MobileNetV2-0.35x,
and hence, used in our experiments. [2]. In this work, we
use a VWW image resolution of 224×224 [2].

ImageNet [4]: The ILSVRC-2012 ImageNet [4] is an im-
age recognition dataset with 1k classes and 1.3M images,
which is widely used as a benchmark to pre-train back-
bone networks for various down stream tasks, such as ob-
ject detection. In this work, we use an image resolution of
224 × 224 for ImageNet, the same as used in the original
paper [4]. To emulate a memory-constrained platform, we
use MobileNetV2-0.35x to evaluate the pooling methods.
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