
Understanding the Role of Mixup in Knowledge Distillation: An Empirical
Study (Supplementary Material)

Hongjun Choi, Eun Som Jeon, Ankita Shukla, Pavan Turaga

Geometric Media Lab
School of Arts, Media and Engineering, Arizona State University

School of Electrical, Computer and Energy Engineering, Arizona State University
hchoi71@asu.edu, ejeon6@asu.edu, ashukl20@asu.edu, pturaga@asu.edu

1. Additional Experimental Results

Here, we further evaluate the effectiveness of KD for var-
ious combinations of teacher-student networks. In Table 1,
we can see several intriguing points; Firstly, as we claimed
in observation 2), distilling decent quality of knowledge
is crucial to success in KD. In other words, transferring
knowledge from low-accuracy teacher models would hurt
student performance. If we look at the last row in this ta-
ble, the student network trained with the help of the low-
est accuracy teacher (T:RN20) always shows degraded per-
formance, compared to the baseline. Also, we can see the
best accuracy (in bold) when the capacity of the teacher
is larger than the student, but the best teacher models al-
ways do not lead to the best students. This result indi-
cates that a better teacher sometimes may not be the best
option for distillation. Secondly, we still anticipate the ben-
efit of smaller-capacity teachers’ supervision in training
the larger-capacity student as seen in some cases such as
T:RN32&S:RN44 and T:RN44&S:RN56, etc. This obser-
vation supports a recent finding [7] that the poorly-trained
teacher with worse performance can also enhance the stu-
dent. Consequently, we conjecture that the large capacity
gap between a teacher and student would not result in favor-
able distillation performance, yet it is difficult to conclude
the optimal capacity gap between them.
Without hard labels: In a conventional KD [3], the stu-
dent network is trained by minimizing the similarity with
two types of labels: the hard one-hot labels and the soft la-
bels generated by the teacher network. Here, we minimize
the cross-entropy loss with hard labels and minimize the KL
divergence between output logits in the teacher and the stu-
dent. In this way, KD gives more importance to the KL di-
vergence loss to improve student performance. To figure out
the effects of soft labels, in this experiment, we only train
the student network where our students solely rely on the
KL divergence loss without the hard labels. Table 2 presents

Table 1. Test accuracy (%) on CIFAR100 for all teacher-student
pairs when T = 4 in T&S configuration.

S:RN20 S:RN32 S:RN44 S:RN56 S:RN110

Baseline 68.90 71.43 72.29 72.41 74.31

KD, T:RN110 70.40 73.23 74.25 74.98 76.08
KD, T:RN56 70.98 73.34 74.26 74.82 75.28
KD, T:RN44 70.67 72.67 73.40 74.38 75.21
KD, T:RN32 70.57 72.73 73.54 74.00 74.56
KD, T:RN20 68.88 70.16 71.01 71.78 72.58

test accuracy when using only soft labels with balancing pa-
rameter αkd = 1 and we obtain comparable performance as
compared to Table 1. This result indicates that if knowledge
is distilled from a well-trained teacher network, the student
preserves its generalization using soft labels only. These re-
sults are in accord with the previous studies [1, 4, 6] that
addressed the efficacy of soft labels.

Table 2. Test accuracy (%) on CIFAR100 under all combinations
of teacher/student when T = 4 in T&S configuration. Note, we
train the student model only with the soft labels.

S:RN20 S:RN32 S:RN44 S:RN56 S:RN110

Baseline 68.90 71.43 72.29 72.41 74.31

KD, T:RN110 70.23 73.11 74.40 74.89 76.01
KD, T:RN56 70.27 72.65 73.68 74.75 75.53
KD, T:RN44 70.35 72.58 73.22 73.98 75.05
KD, T:RN32 70.43 71.95 73.08 73.68 74.70
KD, T:RN20 69.09 69.96 70.65 70.77 71.74

Vanilla models with mixup: In section 5, we compared
our models with various distillation methods. Through
our extensive results, we found that in some cases, partial
mixup (PMU) results in better distillation performance and
full mixup (FMU) sometimes outperforms partial mixup in



Table 3. Test accuracy (%) on CIFAR100 with vanilla models. Mix-S results are for the vanilla student models trained with mixup (α = 0.2
and α = 1.0). The higher accuracy among those two values is highlighted in red. The reported results (Mix-S) are averaged over 3 runs.

Teacher W40-2 W40-2 RN56 RN110 RN110 RN32×4 VG13 VG13 RN50 RN50 RN32×4 RN32×4 W40-2
Student W16-2 W40-1 RN20 RN20 RN32 RN8×4 VG8 MN2 MN2 VG8 SN1 SN2 SN1

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64 74.64 79.34 79.34 79.42 79.42 75.61
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36 64.6 64.6 70.36 70.50 71.82 70.50

Mix-S (α = 0.2) 73.49 72.03 68.95 68.95 71.47 72.85 70.99 65.82 65.82 70.99 73.90 74.79 73.90
Mix-S (α = 1.0) 72.64 70.89 67.01 67.01 70.38 71.56 71.25 66.14 66.14 71.25 74.48 75.64 74.48

KD[3] 74.92 73.54 70.66 70.67 73.08 73.33 72.98 67.37 67.35 73.81 74.07 74.45 74.83

Ours (No mixup) 75.38 73.70 71.85 71.61 73.60 75.46 72.92 67.37 67.72 73.10 73.38 75.06 75.09
Ours (PMU=10%) 76.06 74.42 72.09 71.94 74.07 76.87 73.60 68.52 69.55 74.29 75.89 77.06 76.78
Ours (PMU=50%) 75.87 74.69 71.80 71.78 73.97 77.13 74.00 69.14 69.69 74.61 76.83 77.60 77.18
Ours (FMU) 75.69 73.34 70.98 70.99 73.48 77.25 73.84 68.81 69.80 74.50 77.17 77.92 77.00

some combinations. To further analyze these results, we
train the vanilla student model from scratch with mixup ac-
cording to the change in α and evaluate the performance.
For comparison, we also present our results including the
conventional KD method [3] as shown in Table 3. In this
table, we explore two different α values, 0.2 and 1.0, and
the higher accuracy among different α is highlighted in
red. This result shows that there exists a network that is
more favorable to mixup-augmentation, which also could
result in better performance with strongly interpolated pairs
(α = 1.0). In addition, when the network that showed bet-
ter performance in α = 0.2 is used as the student in KD, a
small amount of mixup pairs (PMU=10%) generally works
well for our distillation method. Also, we observe that when
the network that showed better performance in α = 1.0 is
used as the student in KD, either a large amount of mixup
pairs or full mixup (PMU=50% or FMU) works well for
ours, but they are not exactly linear related.

2. Additional Visualization Results

In this section, we provide additional feature representa-
tions for various networks from ResNet20 to ResNet110 [2]
with the V-score [5].
Feature representation of the network trained
with/without mixup: Figure 1 depicts the feature
representations for various ResNet networks on the train
and test sets. Similar to previous analyses, we selected (1)
semantically similar classes (Baby, Boy, Girl, Man, and
Woman) and (2) semantically different classes (Beaver,
Apple, Aquarium Fish, Rocket, and Turtle). As we can
see in this figure, the small-capacity network promotes
more scattered projections than the large-capacity network.
Specifically, if we look at the embeddings of ResNet20 in
similar classes, they are notably dispersed on both train and
test sets while it still well-preserves the feature separability
in different classes.

Similar observations can be made in Figure 2. This fig-
ure illustrates the effect of the network trained with mixup
(Mix-ResNet) in feature representation. As compared to the
Figure 1, the projections of mixup-trained networks in sim-
ilar classes are more scattered on both sets while the projec-
tions of the instances in different classes relatively form a
tight and concentrated cluster. The supported measurement
based on V-score is given in Figure 3.
V-scores: Now, we provide the V-score to support our find-
ings as seen in Figure 3. The left figure illustrates the V-
score on the train set for the network trained with/without
mixup (i.e., Normal vs Mixup) and the right one depicts
the V-score on the test set. In similar classes, interest-
ingly, we observe that mixup-trained networks enforce V-
scores drastically dropped in the train set. We note that in
KD, the student and teacher models are trained on the same
dataset. Therefore, this result supports our claim that a stu-
dent trained with supervision by a mixup-trained teacher
cannot take advantage of learning the superior knowledge
because of the feature scattering in similar classes. We also
can see a slight increase in V-score on the test set for differ-
ent classes (the yellow bar is slightly above the gray bar in
the right figure), and this might be because mixup improves
generalization on the unseen data.
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Figure 1. Feature representations of the penultimate layer with various ResNet networks trained without mixup.

T
r
a
in

 S
e
t

T
e
s
t 

S
e
t

Different Class

 

Simillar Class

Beaver Apple Aquarium Fish Rocket Turtle

Baby Boy Girl Man Woman

 

Mix-ResNet20
 

Mix-ResNet32
 

Mix-ResNet44
 

Mix-ResNet56
 

Mix-ResNet110

Figure 2. Feature representations of the penultimate layer with various ResNet networks trained with mixup.



Figure 3. V-scores on train and test set for various ResNet models. The higher value is the better clustering.
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