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S1. Introduction

In the supplementary material, we first provide the de-
tailed architecture of the vertex regression module. We then
give the additional results of the 54 vertices model, single-
view method in the visibility module, and multi-view incon-
sistency. Also, we present qualitative comparison of surface
fitting and joint fitting methods.

S2. Vertex Regression Module

The vertex regression module consists of basic convolu-
tion blocks, residual blocks, downsample blocks, upsam-
ple blocks, and a 1 × 1 × 1 convolution layer. The ba-
sic convolution block consists of a 3D convolution layer, a
batch normalization layer, and a ReLU activation function.
The residual block contains two 3D convolution layers, two
batch normalization layers, two ReLU activation functions,
and a residual connection. The downsample block consists
of a 3D max pooling layer with a stride of 2. The upsample
block consists of a 3D deconvolution layer with a stride of
2, a batch normalization layer, and a ReLU activation func-
tion. The vertex regression module is constructed using 3
basic convolution blocks, 20 residual blocks, 5 downsam-
ple blocks, 5 upsample blocks, and a 1× 1× 1 convolution.
Fig. S1 shows the detailed structure of the vertex regression
module.

S3. 54 Vertices Model

The 54 vertices model shows worse MPVE and angular
distance performance compared to other sub-vertices mod-
els because the number of vertices on the arms and hands
is relatively small. Too few vertices do not provide enough
information to resolve ambiguity in joint rotation and shape
estimation. Consequently, the 54 vertices model results in
higher wrist rotation errors than the 108 vertices model,
which is presented in Table S1. A visualization of the ver-
tex positions of the 54 vertices model and other sub-vertices
models is presented in Fig. S2.

S4. Single-view Method for Visibility

In this section, we present justification for the use of
I2L-MeshNet [6] in the proposed visibility module. To
this end, we construct three visibility modules by combin-
ing three state-of-the-art methods for single-view human
mesh reconstruction (i.e., I2L-MeshNet, METRO [3], and
Graphormer [4]) and a visibility computation algorithm 1. A
detailed procedure for visibility estimation based on single-
view mesh reconstruction is presented in Sec. 3.2 of the
main paper. Table S2 shows the performance comparison
for the cases in which three visibility modules are used in
the proposed method. We found that using I2L-MeshNet
produces better results than using other methods. Based on
this result, we adopt I2L-MeshNet in our visibility module.

S5. Multi-view Inconsistency

This section presents additional examples on multi-view
inconsistency in the ablation experiments of the main pa-
per. Fig. S3 gives a scenario where the left hand is invisible
due to occlusion. In the second view, it is difficult to deter-
mine the exact position of the left hand because the subject’s
left hand is not visible. However, in the remaining views,
the position of the subject’s left hand can be easily found.
Therefore, in order to reconstruct the left-hand mesh, the
model is desirable to have a higher dependence on the fea-
tures obtained from the remaining views other than the sec-
ond view. However, the softmax baseline has a relatively
high dependence on the features obtained from the second
view. As a result, the softmax baseline incorrectly recon-
structs the left hand. However, LMT reduces the depen-
dence on the features obtained from the second view and
successfully reconstructs the human mesh.

Fig. S4 shows a scenario where the subject’s right foot
cannot be seen well in the second view. According to the
results, the softmax baseline fails to reconstruct the mesh,
but LMT reconstructs it successfully. Similar to the case of
Fig. S3, it can be seen that the use of visibility reduces the

1https://github.com/MPI-IS/mesh
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Figure S1: The architecture of the vertex regression module. (a) Pipeline of the vertex regression module. (b) Basic
convolution block. (c) Residual block. (d) Upsample block. (e) Downsample block.
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Figure S2: Visualization of the vertex positions of sub-vertices models. Green and red point sets denote full-vertices and
sub-vertices, respectively.

dependence on the feature obtained from the second view
where occlusion occurs.



Angular ↓ pelvis L-hip R-hip torso L-knee R-knee spine L-ankl R-ankl chest neck L-thrx R-thrx head L-shld R-shld L-elbw R-elbw L-wrst R-wrst
108 5.09 5.75 5.89 5.80 5.71 5.75 5.55 8.32 9.88 4.59 13.31 9.71 10.49 11.11 12.69 14.66 13.75 11.72 19.82 20.94
54 5.04 6.21 6.30 6.23 6.09 5.57 5.85 8.47 9.69 4.60 12.89 10.17 10.59 10.70 12.10 15.10 13.58 12.57 25.61 24.22

Table S1: Per-joint rotation error comparison of the 108-vertices and 54-vertices models. 3D heatmaps with 16×16×16
resolution are used in both experiments in this table.

Single-view method MPJPE ↓ MPVE ↓ Angular ↓
I2L-MeshNet [6] 17.59 23.70 11.33
METRO [3] 18.15 23.98 11.55
Graphormer [4] 17.77 24.23 11.52

Table S2: Ablation results on the single-view mesh re-
construction method in the visibility module.
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Figure S3: The first row visualizes the input multi-view im-
ages. The second and third rows show the reconstructed
meshes generated from the softmax baseline and LMT, re-
spectively.

S6. Qualitative Results

This section shows that our surface fitting produces qual-
itatively better results in terms of joint rotation and shape
compared to joint fitting [2, 7]. Fig. S5 shows the human
meshes reconstructed by LT-fitting and LMT on the Hu-
man3.6M [1] dataset. The second row of Fig. S5 shows that
LT-fitting incorrectly predicts the rotations of the left ankle,
elbows, and wrists. The fifth row of Fig. S5 shows that LT-
fitting incorrectly reconstructs the right knee rotation and
human shape. However, in both cases, LMT accurately pre-
dicts joint rotation and human shape.

Fig. S6 shows the human meshes reconstructed by LT-
fitting and LMT on the MPI-INF-3DHP [5] dataset. The
second row of Fig. S6 shows that LT-fitting incorrectly pre-
dicts the rotations of the right shoulder, elbows, wrists,
knees, and ankles. The fifth row of Fig. S6 shows that LT-
fitting incorrectly predicts the rotations of the neck, wrists,
elbows, and right knee. However, similar to the results
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Figure S4: The first row visualizes the input multi-view im-
ages. The second and third rows show the reconstructed
meshes generated from the softmax baseline and LMT, re-
spectively.

on Human3.6M, LMT accurately predicts joint rotations in
both cases. As can be seen from Figs. S5 and S6, the human
mesh reconstructed with accurate joint rotation and shape
information can explain the human body more naturally,
and we qualitatively prove the superiority of surface fitting
based on these results.
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Figure S5: Qualitative results on Human3.6M. The first and fourth rows show the input images. The second and fifth
rows visualize the human meshes reconstructed by LT-fitting. And the third and sixth rows visualize the human meshes
reconstructed by LMT.



Figure S6: Qualitative results on MPI-INF-3DHP. The first and fourth rows show the input images. The second and fifth
rows visualize the human meshes reconstructed by LT-fitting. And the third and sixth rows visualize the human meshes
reconstructed by LMT.


