
DDNeRF: Depth Distribution Neural Radiance Fields — Supplementary

David Dadon, Ohad Fried, Yacov Hel-Or
School of Computer Science, Reichman University, Herzliya, Israel

dadonda89@gmail.com , ofried@runi.ac.il, Toky@runi.ac.il

1. Additional Implementation Details

1.1. Architecture

We used the MipNeRF [1] architecture with two modifi-
cations. (1) We used two different networks for the coarse
and fine models — similar to what was implemented in the
original NeRF [3] paper. (2) We changed the last linear
layer of the coarse model, adding µ and σ to the predic-
tions. Figure 1 describes our coarse network architecture.
In Section 1.2.2 we discuss the integration of this model
with NeRF++ [5].

Similar to MipNeRF, we used Integrated Positional En-
coding (IPE) to encode the input intervals before inserting
them into the network. The viewing direction was encoded
using standard Positional Encoding (PE). Although our ex-
periments are based of MipNeRF and NeRF++, our model
can be integrated with any variant of NeRF that uses hierar-
chical sampling by changing the variant’s coarse network.

1.2. Models For Unbounded Scenes

1.2.1 Log Sampling Method

Both Mip-NeRF and the vanilla DDNeRF employ a uniform
sampling strategy in the coarse network. For unbounded
360◦ scenes, we also tried a different sampling strategy, a
combination of principles from two methods. Similar to
NeRF++, we dedicate half of the samples to uniformly sam-
ple the foreground volume. We implemented it by defining
a maximum distance rmax from the origin (the scene cen-
ter) that we designate the foreground sphere. This sphere
contains all camera locations in the scene. When render-
ing an image, the maximum distance along the ray consid-
ered as foreground is defined as tmax = 2 · rmax (see Fig-
ure 2 for a visual illustration). Outside of the foreground
range we used the DONeRF [4] log-sampling method. Us-
ing this method we can cover more efficiently scenes with
a large depth variations, because it enables to allocate more
samples to the foreground space, then gradually reduce the
sampling rate in distant areas. For n samples, the m = n

2

foreground samples tuniform were taken as follows:

tuniformi = tnear·(1−
i

m
)+tmax·(

i

m
) when i ∈ {0 · · ·m}

(1)
where tnear is the t value of the near plane in the rendered
frustum. The background log-sampling tlogSampl values
are calculated as follows:

tlogSampl
i =

tmax +

(
1− log(di − tmax + 1)

log(tfar − tmax + 1)

)
· (tfar − tmax)

(2)

where tfar is the t value of the far plane in the rendered
frustum, and the di values are calculated as follows:

di = tmax ·(
i

m
)+tfar ·(1−

i

m
) when i ∈ {0 · · ·m} (3)

Figure 2 illustrates the first-stage sampling strategy for
unbounded scenes. The second sampling stage remaine the
same.

This method, noted as DDNeRF*, achieves better per-
formance than Mip-NeRF for unbounded scenes and its
SSIM and LPIPS perceptual scores outperform the NeRF++
scores (See Table 4 in the main paper). Its main drawback
is background modeling; NeRF++ produces better quality
in the background areas.

1.2.2 DDNeRF++

To overcome the background drawback, we integrated our
model to the NeRF++ foreground model, i.e. we re-
placed the NeRF++ foreground model with DDNeRF. The
background model remains similar as in NeRF++. We
denote this new model – DDNeRF++. The foreground
model is trained similarly to DDNeRF, and the main dif-
ference is that when calculating the DEloss component we
consider only rays that intersect with the foreground ar-
eas. DDNeRF++ achieves better foreground quality then
NeRF++ while maintaining the same background quality.
Figure 3 demonstrates the quality difference between the
methods.



Figure 1. DDNeRF Coarse network architecture: The location input is used the Integrated Positional Encoding (IPE), while the direction
input is used the regular Positional Encoding (PE). Green arrows indicate fully connected layers and the yellow arrow indicates concatena-
tion. Note that the density α is independent of the viewing direction while the other outputs depend on the viewing direction.

Figure 2. Sampling strategy for unbounded scenes: The blue triangles represent camera locations. Left: The yellow star indicates a
foreground object located at the origin; the gray circle represents the foreground sphere defined by rmax and tmax. Right: The yellow star
is a foreground object located inside the foreground range. The blue dots are the coarse samples, (T c), along the ray. Note, the difference
in the sampling rate between the section from the near plane to tmax (uniform sampling) and the the section from tmax to the far plane
(log sampling).

1.3. Smoothing

As in MipNerf, we use a 2-tap max filter followed by a 2-
tap blur filter for smoothing hc before sampling the second
stage. For a small number of samples (up to 16) we used
a simple 1D blur filter with [0.1, 0.8, 0.1] values. We have
found that this smoothing works better for a small number
of samples in most scenes. For smoothing the internal in-
terval we used the uncertainty factor u as described in the
main paper.

2. Additional experiments

This Section presents further qualitative and quantitative
results and comparisons on the tested datasets. It also pro-

vides ablation study, evaluation of the predicted distribution
quality, analysis for model size, and performances and anal-
ysis of the regularization terms.

2.1. Additional Results

Table 1 shows quantitative results per scene for the
forward-facing and synthetic domains. Figures 4 and 5 il-
lustrates the qualitative superiority of our model over Mip-
NeRF on synthetic and forward-facing scenes for different
amount of samples.

Figure 6 demonstrate the superiority of our model for
360◦ scenes. Notice, that our model achieves better results
with fewer samples.



NeRF++ DDNeRF++ DDNeRF*

Figure 3. Unbounded scenes comparisons: Left images were rendered using the NeRF++ model, the middle image using DDNeRF++ and
the right image using DDNeRF*. Relatively to NeRF++, DDNeRF* improves the foreground performance but struggle with background
modeling. Notice that DDNeRF++ is manage to produces better results in foreground areas while background quality remain the same.

Table 1. Experiment results on the LLFF fern and trex scenes, (real-world forward-facing) and synthetic 360◦ LEGO and Ficus scenes. We
trained each model for 200k iterations. Our model achieved better results than the regular models.

FERN TREX LEGO Ficus

Smpl Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
4 MipNeRF 20.20 0.521 0.606 19.48 0.548 0.585 21.64 0.733 0.281 22.07 0.819 0.221

DDNeRF 20.81 0.577 0.507 20.23 0.565 0.598 21.79 0.741 0.274 22.07 0812 0.199
8 MipNeRF 21.60 0.614 0.477 21.26 0.662 0.429 24.64 0.813 0.184 24.37 0.878 0.163

DDNeRF 22.23 0.669 0.384 21.85 0.701 0.384 24.92 0.836 0.160 24.42 0.886 0.140
16 MipNeRF 23.37 0.707 0.327 23.30 0.770 0.250 27.83 0.888 0.092 26.38 0.920 0.108

DDNeRF 23.51 0.727 0.285 23.71 0.791 0.239 28.67 0.917 0.062 26.66 0.927 0.096
32 MipNeRF 23.85 0.740 0.279 24.79 0.826 0.175 30.38 0.932 0.045 28.54 0.949 0.054

DDNeRF 23.87 0.748 0.264 24.91 0.829 0.175 31.53 0.948 0.031 28.81 0.954 0.047

2.1.1 3D Reconstruction

Using Marching cubes to extract 3D shape from NeRF is
performed by sampling points inside a 3D voxel grid and
using those points as inputs to a NeRF Model. This proce-
dure is not perfectly aligned with our model that gets as an
input an interval of a cone. We believe this issue is beyond
the scope of this paper and we extract 3D mesh from point
clouds that we extracted from different views of the scene.
The full procedure is performed the follows:

1. To avoid smash artifacts on the edges of the object
(from specific views), we filter points with normals
that are close to be perpendicular to the viewing di-
rection.

2. We define a cube that contains the main object and re-
move all points that are outside that cube.

3. We remove outliers and cluster points using the DB-
SCAN [2] algorithm.

4. We take the inlier points and use Poisson meshing to
extract the object surface.

Using the above method as an alternative to the marching
cubes, we also take into account floating artifacts that often
appear in complex scenes. Those artifacts appear as small
floating dense areas in the generated scene.

Although the model density prediction does not depend
on the viewing direction, the point cloud is calculated as
E[hf (t)] from a specific viewing location. Thus, point
clouds extracted from different viewing directions may not
be aligned perfectly one on top of the other. Since the object
geometry from a specific viewpoint is not represented as a
binary surface but as E[hf (t)], it is possible that the expec-
tation of two different rays looking at the same point, but
passing through different volumes, will be different. This
is due to different densities along the rays or occlusion arti-
facts. See Figure 8 for intuitive illustration of this effect.
Using our proposed method, instead of marching cubes,
may be less accurate, but it represents the 3D perception
we obtain when rendering a novel view. 3D reconstruction
using Mip-NeRF and DDNeRF are presented in Figure 7.
DDNeRF shows significantly better results.

2.2. Ablation study

To demonstrate the contribution of each component in
our model we performed an ablation study. Table 2 demon-
strates the importance of the uncertainty factor and the
learned variance (instead of defining a constant variance).
Figure 9 demonstrates the importance of the regularization
component in the loss function and illustrates its effect on
the Gaussian’s parameter values.



4 samples 8 samples 16 samples

Figure 4. Forward-facing scenes results. Each column was generated using different number of samples. The first row in each scene
was generated by DDNeRF while the second row by Mip-NeRF. Our model produces better quality images for both scenes and for each
number of samples.

2.3. Lighter coarse model

We perform additional study in order to examine the pos-
sibility to reduce the number of parameters in the coarse
model. We examined the effect of the coarse model’s size
on the model performance. We tested two scenarios: In the
first scenario we reduced the number of parameters in the
coarse model and kept the fine model with the same number
of parameters. In the second scenario, we reduced the num-

ber of parameters in the coarse model and added parameters
to the fine model, while keeping the total number of param-
eters constant. Results are presented in Table 3. It is demon-
strated that reducing the size of the coarse model causes a
negligible decrease in quality while improving the model
performance in both time (up to 27% faster) and space (up
to 30%). On the other hand, when adding those parameters
to the fine model, the overall model quality increases while



4 samples 8 samples 16 samples 32 samples

Figure 5. Synthetic scenes results. Each column was generated using different number of samples. The first row in each scene was
generated by DDNeRF while the second row by Mip-NeRF. Our model produces better quality images for both scenes and for each
number of samples.

time and space remain relatively the same.

2.4. DDNeRF Distribution Evaluation

To evaluated our predicted distribution in the coarse
model, we tested this distribution on the Fern scene from
the LLFF dataset. We extracted the depth as the mean
of the pdf along the ray. We compare mipNeRF’s coarse
model, E[hc(t)], with our coarse model, E[fdd(t)]. For
the fine models, the depth is calculated as E[hf (t)]. Our

coarse model produces a much better depth estimation than
the MipNeRF coarse model. Figure 10 shows qualitative
results.

For quantitative evaluation, we took two different views
of that scene, extract key-points, calculate the fundamen-
tal matrix between those images (to remove outliers), and
estimate inlier 3D points using rays intersection. We refer
those 3D points as our GT values for the evaluation process.



Figure 6. Motorcycle results: Left column – DDNeRF model. Right column – Mip-NeRF. The number of samples are noted above
each image. Our model achieves better results for any number of samples. The colored crops in the middle column helps to visualize
the differences between the results. Note, in the last row DDNeRF uses only one third of the number of samples while still outperforms
Mip-NeRF.

We compare those GT values to the values predicted by our
coarse model and Mip-NeRF coarse model. We calculate
the relative errors from the coarse distributions E[hc(t)] and
E[fdd(t)] to the GT points. We also calculate the coarse
distribution s.t.d. Our model achieve lower error (i.e. the
predicted E[fdd(t)] is more accurate than Mip-NeRF pre-

dicted E[hc(t)]) and lower s.t.d (i.e. DDNeRF distribution
focuses on smaller areas). The evaluation was performed
using NDC space.



Figure 7. 3D reconstruction from point clouds: The first row was reconstructed with Mip-NeRF. The second row was reconstructed
with DDNeRF. Note, that DDNeRF achieves finer and less noisy shapes, especially around complex geometry regions. Notice, that the
motorcycle lift was lost during the clustering in the Mip-NeRF model, which implies weaker structural connectivity.

Figure 8. Occlusion artifacts: Same location in space may get non
perfectly align points from 3 different views. The green camera
has clean view to the point and the the green point is relatively
accurate. The red and blue cameras dealing with big and small
artifacts that cause the red and the blue point to diverge from the
exact spatial location.

Table 2. Ablation study: Motorcycle scene, 32 samples, 300k it-
erations. We train with a constant variance value, without using the
uncertainty factor, using a constant uncertainty factor, and finally
our full model. The results show that predicting the variance is
better than using a constant variance. The table also demonstrates
the importance of the uncertainty factor to the learning process.

Model Version PSNR↑ SSIM↑ LPIPS↓
Mip-NeRF Standard 20.36 0.532 0.532

DDNeRF Constant variance 20.62 0.567 0.462
DDNeRF W/o uncertainty factor 20.39 0.555 0.453
DDNeRF Const uncertainty factor 20.67 0.571 0.450

DDNeRF Full model 20.84 0.577 0.452



Mu Sigma Depth distribution RGB

0.0 0.2 0.4 0.6 0.8 1.0
0

5000

10000

15000

20000

25000

30000

35000

0.0 0.2 0.4 0.6 0.8 1.0
0

10000

20000

30000

40000

50000

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.00

0.05

0.10

0.15

0.20

0.25

fdd

points of interest

0.0 0.2 0.4 0.6 0.8 1.0
0

2500

5000

7500

10000

12500

15000

17500

0.0 0.2 0.4 0.6 0.8 1.0
0

5000

10000

15000

20000

25000

30000

35000

40000

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0
0

20000

40000

60000

80000

100000

0.0 0.2 0.4 0.6 0.8 1.0
0

20000

40000

60000

80000

100000

120000

140000

160000

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0
0

50000

100000

150000

200000

250000

300000

350000

0.0 0.2 0.4 0.6 0.8 1.0
0

50000

100000

150000

200000

250000

300000

350000

400000

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.00

0.05

0.10

0.15

0.20

0.25

Figure 9. Regularization effect: First row – A model with too high regularization value. Second row – A model with uncertainty factor
and good regularization value. Third row – A model with uncertainty factor and without regularization. Last row – A model without
uncertainty factor and without regularization. The two left columns are the intervals µ and σ histograms. The right column is the RGB
output of the model with its PSNR value. The second column from the right is an example of the model density distribution along a single
ray. Notice, how too high regularization factor cause µ and σ values remain close to 0.5 and prevents efficient sampling procedure. On
the other hand, notice that without regularization the σ decrease toward zero, causing the Gaussian to over-shrink and reduce the output
quality. Also, note how the µ is pushed toward 0 and 1 due to the sigmoid vanishing gradient areas.

Table 3. Ablation study on model parameters number: Motor-
cycle scene, 32 samples, 300k iterations. Coarse and Fine columns
represents the number of neurons per hidden layer in each of the
models. Sec/it is the time (in sec.) for one training iteration.
The Render column measures the average rendering time for a
1008x756 image. Performance was measured on an RTX3090
GPU.

Coarse Fine PSNR↑ SSIM↑ LPIPS↓ Sec/it Render Mem

256 256 20.63 0.572 0.446 0.066 7.10 1.84GB

128 256 20.61 0.569 0.456 0.059 5.85 1.47GB
64 256 20.94 0.571 0.474 0.056 5.19 1.28GB

128 338 20.97 0.596 0.420 0.068 7.29 1.73GB
64 356 21.43 0.605 0.432 0.068 6.56 1.58GB

Table 4. Distribution accuracy: Fern Scene with various num-
ber of samples. Error was calculated as the relative error between
E[hc(t)] and the GT point for Mip-NeRF and the relative error
between E[fdd(t)] and the GT point for DDNeRF. STD was cal-
culated relative to the GT distance.

Model 4 Samples 8 Samples 16 Samples
Error Std Error Std Error Std

Mip-NeRF 8.34% 10.36% 7.91% 6.58% 1.83% 3.68%
DDNeRF 3.96% 2.96% 2.54% 2.69% 1.41% 2.39%



Figure 10. Disparity comparisons: The estimated disparity for
the Fern scene measured for Mip-NeRF and DDNeRF. Both mod-
els were trained and evaluated using eight samples and without
NDC warping. Notice how the depth estimation of our coarse
model is closer to the estimation of the fine model, and is better
than the estimation of the Mip-NeRF’s coarse model.



References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neural
radiance fields. ICCV, 2021.

[2] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei
Xu. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proc. of 2nd Interna-
tional Conference on Knowledge Discovery and, pages 226–
231, 1996.

[3] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020.

[4] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, An-
ton S. Kaplanyan, and Markus Steinberger. DONeRF: To-
wards Real-Time Rendering of Compact Neural Radiance
Fields using Depth Oracle Networks. Computer Graphics Fo-
rum, 40(4), 2021.

[5] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv:2010.07492, 2020.


