

Supplementary Material - Knowing What to Label for Few Shot Microscopy Image Cell Segmentation

Youssef Dawoud ^{1*} Arij Bouazizi ^{1,2} Katharina Ernst ³ Gustavo Carneiro ⁴
Vasileios Belagiannis ⁵

¹ Universität Ulm, Ulm, Germany

² Mercedes-Benz AG, Stuttgart, Germany

³ Ulm University Medical Center, Ulm, Germany

⁴ Centre for Vision, Speech and Signal Processing, University of Surrey, United Kingdom

⁵ Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

youssef.dawoud@uni-ulm.de

In the supplementary material we present the Wilcoxon significance test of our approach against random, MC-dropout, and entropy baselines in Tab. 1. Our null hypothesis (H_0) assumes that the mIoU of the baseline is greater than our approach i.e. $\text{mIoU}_{\text{baseline}} > \text{mIoU}_{\text{Ours}}$. On the other hand, the alternate (H_a) claims the opposite i.e. $\text{mIoU}_{\text{baseline}} < \text{mIoU}_{\text{Ours}}$. We use significance level of 0.05. The results clearly demonstrate the significance of our approach in many cases (36 out of 75) relative to the baselines which supports the alternate hypothesis. We show additional visual results for B5 and B39 datasets and their corresponding numerical results in Tab. 7. Furthermore, we report the numerical results of our ablation studies in Tab. 4 to 3. First, in Tab. 4 and 5 we show the impact of limiting the image patches extracted per target image for ssTEM and EM target datasets respectively. Second, we present the impact of increasing the number of patches extracted per 1-shot for ssTEM target dataset in Tab. 4. Afterwards, in Tab. 2 we report the performance on target datasets TNBC, EM, and ssTEM between using the pretrained model and the model trained using pseudo-label segmentation learning for support set selection and fine-tuning. In Tab. 3 we report the results of using pixel-level augmentations compared to affine augmentations. Finally, we report the fine-tuning performance of human-expert selection compared to our selection approach in Tab. 6.

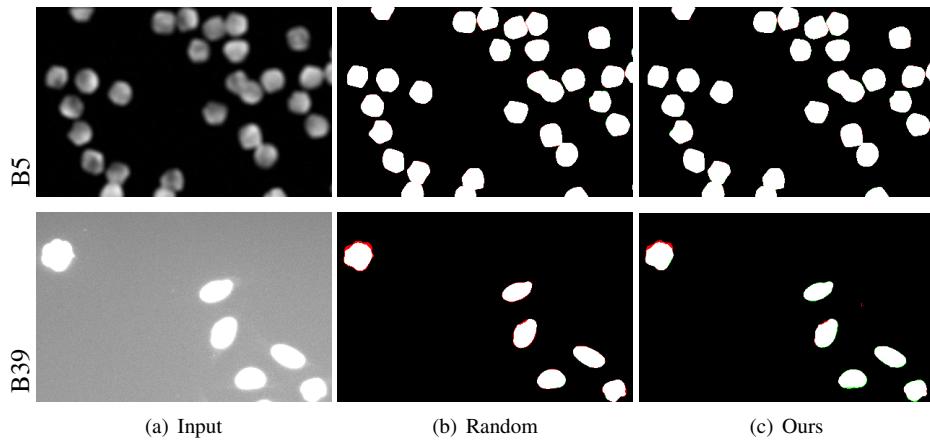


Figure 1. Visual Result. We visually compare our scoring function (Ours) to random selection using the FCRN architecture at $|\mathcal{B}| = 3$ -shots. The red colour corresponds to false positive, the green colour to false negative, the black colour to true negative, and the white colour to true positive. Best viewed in colour.

Target: TNBC					
Method	1-shot ($ \mathcal{B} = 100$)	3-shot ($ \mathcal{B} = 300$)	5-shot ($ \mathcal{B} = 500$)	7-shot ($ \mathcal{B} = 700$)	10-shot ($ \mathcal{B} = 1000$)
Entropy	0.003	0.023	0.062	0.037	0.023
MC-dropout	0.003	0.023	0.063	0.018	0.023
Random	0.008	0.011	0.011	0.037	0.003
Target: EM					
Method	1-shot ($ \mathcal{B} = 400$)	3-shot ($ \mathcal{B} = 1200$)	5-shot ($ \mathcal{B} = 2000$)	7-shot ($ \mathcal{B} = 2800$)	10-shot ($ \mathcal{B} = 4000$)
Entropy	0.25	0.003	0.046	0.006	0.14
MC-dropout	0.29	0.003	0.008	0.003	0.003
Random	0.08	0.005	0.057	0.057	0.029
Target: ssTEM					
Method	1-shot ($ \mathcal{B} = 500$)	3-shot ($ \mathcal{B} = 1500$)	5-shot ($ \mathcal{B} = 2500$)	7-shot ($ \mathcal{B} = 3200$)	10-shot ($ \mathcal{B} = 5000$)
Entropy	0.037	0.08	0.96	0.89	0.36
MC-dropout	0.03	0.12	0.81	0.94	0.71
Random	0.011	0.006	0.14	0.52	0.084
Target: B39					
Method	1-shot ($ \mathcal{B} = 100$)	3-shot ($ \mathcal{B} = 300$)	5-shot ($ \mathcal{B} = 500$)	7-shot ($ \mathcal{B} = 700$)	10-shot ($ \mathcal{B} = 1000$)
Entropy	0.003	0.003	0.003	0.003	0.003
MC-dropout	0.003	0.003	0.003	0.003	0.003
Random	0.99	0.98	0.99	0.99	0.99
Target: B5					
Method	1-shot ($ \mathcal{B} = 100$)	3-shot ($ \mathcal{B} = 300$)	5-shot ($ \mathcal{B} = 500$)	7-shot ($ \mathcal{B} = 700$)	10-shot ($ \mathcal{B} = 1000$)
Entropy	0.99	0.99	0.99	0.99	0.99
MC-dropout	0.99	0.99	0.99	0.99	0.99
Random	0.99	0.99	0.99	0.99	0.99

Table 1. Wilcoxon signed-rank significance test results of Ours vs { Entropy, MC-dropout, Random }. Our null hypothesis H_0 assumes that the mIoU of the baseline is greater than our approach. While the alternate hypothesis H_a claims the opposite. We set the significance level at 0.05 i.e. we reject H_0 if $p < 0.05$. We report the p -values for targets TNBC, EM, ssTEM, B39, and B5.

Target: TNBC					
Model	1-shot	3-shot	5-shot	7-shot	10-shot
$f_\theta(\mathbf{x})$	44.5% \pm 5.0	47.8% \pm 6.2	47.7% \pm 7.5	48.3% \pm 7.0	48.7% \pm 6.2
$f_{\theta'}(\mathbf{x})$	47.1% \pm 3.5	47.8% \pm 5.8	47.7% \pm 5.0	48.0% \pm 5.2	49.2% \pm 4.9
Target: EM					
Model	1-shot	3-shot	5-shot	7-shot	10-shot
$f_\theta(\mathbf{x})$	52.7% \pm 1.9	64.8% \pm 1.7	66.4% \pm 2.0	68.0% \pm 2.0	70.4% \pm 1.0
$f_{\theta'}(\mathbf{x})$	62.0% \pm 3.2	69.8% \pm 2.7	70.6% \pm 3.3	73.1% \pm 2.9	73.7% \pm 3.2
Target: ssTEM					
Model	1-shot	3-shot	5-shot	7-shot	10-shot
$f_\theta(\mathbf{x})$	50.6% \pm 2.8	62.8% \pm 3.0	64.8% \pm 1.7	66.7% \pm 3.4	67.2% \pm 3.0
$f_{\theta'}(\mathbf{x})$	51.3% \pm 3.2	63.3% \pm 3.2	64.2% \pm 3.2	67.3% \pm 2.9	68.7% \pm 2.6

Table 2. Effect on mIoU results of the pseudo-label segmentation learning and selection on the target data sets TNBC, EM, and ssTEM.

Target: TNBC					
Augmentation	1-shot	3-shot	5-shot	7-shot	10-shot
$A = \{R, T_x, T_y\}$	40.6% \pm 4.2	41.4% \pm 4.6	44.7% \pm 5.0	46.9% \pm 4.2	48.7% \pm 3.5
$A = \{C, B, S\}$	47.1% \pm 3.5	47.8% \pm 5.8	47.7% \pm 5.0	48.0% \pm 5.2	49.2% \pm 4.9
Target: EM					
Augmentation	1-shot	3-shot	5-shot	7-shot	10-shot
$A = \{R, T_x, T_y\}$	47.8% \pm 2.6	55.5% \pm 1.7	60.4% \pm 3.6	64.0% \pm 3.2	67.3% \pm 2.7
$A = \{C, B, S\}$	62.0% \pm 3.2	69.8% \pm 2.7	70.6% \pm 3.3	73.1% \pm 2.9	73.7% \pm 3.2
Target: ssTEM					
Augmentation	1-shot	3-shot	5-shot	7-shot	10-shot
$A = \{R, T_x, T_y\}$	49.4% \pm 4.4	61.9% \pm 3.4	64.2% \pm 4.0	67.6% \pm 2.8	69.7% \pm 3.0
$A = \{C, B, S\}$	51.3% \pm 3.2	63.3% \pm 3.2	64.2% \pm 3.2	67.3% \pm 2.9	68.7% \pm 2.6

Table 3. Effect on mIoU results of the data augmentation and selection on the target data set TNBC, EM, and ssTEM.

Method	1-shot ($ \mathcal{B} = 100$)	3-shot ($ \mathcal{B} = 300$)	5-shot ($ \mathcal{B} = 500$)	7-shot ($ \mathcal{B} = 700$)	10-shot ($ \mathcal{B} = 1000$)
Entropy	17.3% \pm 1.3	38.5% \pm 3.0	49.5% \pm 4.0	54.2% \pm 3.7	58.7% \pm 3.3
MC-dropout	17.2% \pm 1.3	38.8% \pm 2.7	49.4% \pm 3.5	54.1% \pm 4.0	58.8% \pm 3.1
Random	20.6% \pm 2.0	39.1% \pm 3.7	47.2% \pm 3.7	52.1% \pm 4.5	56.1% \pm 4.5
Ours	25.2% \pm2.0	41.8% \pm2.9	52.3% \pm2.4	55.4% \pm3.0	60.4% \pm2.2
1-shot					
	$ \mathcal{B} = 100$	$ \mathcal{B} = 200$	$ \mathcal{B} = 300$	$ \mathcal{B} = 400$	$ \mathcal{B} = 500$
Entropy	17.3% \pm 1.3	29.9% \pm 2.4	38.4% \pm 3.0	45.9% \pm 3.4	48.2% \pm 3.2
MC-dropout	17.2% \pm 2.0	29.8% \pm 2.4	38.8% \pm 2.7	45.5% \pm 3.2	49.3% \pm 3.4
Random	20.6% \pm 2.0	31.1% \pm 3.1	38.5% \pm 3.6	45.1% \pm 4.5	47.0% \pm 4.8
Ours	25.2% \pm2.0	35.1% \pm2.6	41.8% \pm3.4	48.8% \pm2.7	51.3% \pm3.2

Table 4. Impact of limiting $|\mathcal{B}|$ on the mIoU results for the target data set ssTEM.

Method	1-shot ($ \mathcal{B} = 100$)	3-shot ($ \mathcal{B} = 300$)	5-shot ($ \mathcal{B} = 500$)	7-shot ($ \mathcal{B} = 700$)	10-shot ($ \mathcal{B} = 1000$)
Entropy	24.8% \pm 1.8	40.8% \pm 0.5	45.3% \pm 1.3	46.7% \pm 1.4	48.7% \pm 1.3
MC-dropout	25.1% \pm 1.1	41.4% \pm 1.4	45.3% \pm 1.3	46.9% \pm 1.4	48.3% \pm 1.3
Random	46.2% \pm 2.2	55.5% \pm 3.4	61.3% \pm 3.5	63.3% \pm 4.2	64.4% \pm 2.3
Ours	48.5% \pm1.8	58.7% \pm3.4	63.6% \pm2.6	65.3% \pm2.2	68.4% \pm4.2

Table 5. Impact of limiting $|\mathcal{B}|$ on the mIoU results for the target data set EM.

Target: TNBC					
Approach	1-shot	3-shot	5-shot	7-shot	10-shot
Expert	32.4%	41.0%	40.0%	41.1%	39.6%
Ours	50.3%	50.8%	49.0%	51.4%	53.0%
Target: ssTEM					
Approach	1-shot	3-shot	5-shot	7-shot	10-shot
Expert	38.0%	55.3%	66.0%	68.9%	72.4%
Ours	52.6%	63.2%	60.5%	67.3%	70.2%

Table 6. Effect on mIoU results of the expert selection and our approach on the target data set TNBC and ssTEM. We report the result for only one experiment i.e. we do not average over ten experiments.

Target: B39					
Method	1-shot ($ \mathcal{B} = 100$)	3-shot ($ \mathcal{B} = 300$)	5-shot ($ \mathcal{B} = 500$)	7-shot ($ \mathcal{B} = 700$)	10-shot ($ \mathcal{B} = 1000$)
Entropy	80.9% \pm 5.6	85.9% \pm 3.5	87.3% \pm 5.0	89.4% \pm 2.7	90.1% \pm 1.7
MC-dropout	72.1% \pm 3.0	71.3% \pm 3.2	73.1% \pm 3.3	76.6% \pm 2.6	77.9% \pm 3.9
Random	93.2% \pm 0.3	92.7% \pm 0.9	92.9% \pm 0.5	92.9% \pm 0.4	92.8% \pm 0.5
<i>Ours</i>	90.1% \pm 1.6	91.9% \pm 1.6	92.7% \pm 0.7	93.0% \pm 0.3	92.9% \pm 0.4
Target: B5					
Method	1-shot ($ \mathcal{B} = 100$)	3-shot ($ \mathcal{B} = 300$)	5-shot ($ \mathcal{B} = 500$)	7-shot ($ \mathcal{B} = 700$)	10-shot ($ \mathcal{B} = 1000$)
Entropy	99.1% \pm 0.1	99.1% \pm 0.1	99.1% \pm 0.1	99.1% \pm 0.1	99.0% \pm 0.5
MC-dropout	99.1% \pm 0.1	99.1% \pm 0.1	99.0% \pm 0.2	99.0% \pm 0.1	99.0% \pm 0.2
Random	99.1% \pm 0.0	99.1% \pm 0.0	99.0% \pm 0.2	99.1% \pm 0.0	99.1% \pm 0.0
<i>Ours</i>	98.9% \pm 0.0	99.0% \pm 0.0	99.0% \pm 0.0	99.0% \pm 0.0	99.0% \pm 0.0

Table 7. mIoU results for the target testing sets of B39, and B5. Best results are highlighted.