
Video joint denoising and demosaicing with recurrent CNNs
Supplementary material

Valéry Dewil† Adrien Courtois† Mariano Rodríguez† Thibaud Ehret†

Nicola Brandonisio∗ Denis Bujoreanu∗ Gabriele Facciolo† Pablo Arias†

† Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centre Borelli, 91190, Gif-sur-Yvette, France
∗ Huawei Technologies France SASU

https://centreborelli.github.io/RVDD/

1. Network architecture
We consider a U-Net architecture shown in Figure 1, as it

is simple and due to its multiscale nature it provides a good
trade-off between denoising quality and computational cost.
Our U-Net has the following characteristics:

• U-Net with 4 dyadic scales

• fusion of skip connections via concatenation

• two convolution layers in each scale of en-
coder/decoder paths

• upscaling using bilinear upsampling followed by con-
volution

• downscaling using a convolution followed by max-
pooling

• all convolutions are 2D convolutions with 3x3 filters
and output feature maps of 48 channels

• inputs: 2 packed raw frames concatenated together as
a 8 channel tensor of size W/2×H/2 (with optionally
an occlusion mask as a 9th channel)

• outputs: 1 packed raw frame (4 channels tensor of size
W/2×H/2).

The architecture based on ConvNeXt U-Net (see dia-
gram in Figure 2) provides better results than the standard
U-Net (see PSNR/SSIM results in Table 4 of the main paper
and Table 3 of this supplementary material). For the base-
line (RVDD-basic), the gain is marginal, however the Con-
vNeXt U-Net converges much faster. In Figure 3, we show a
plot of the PSNR obtained in our validation dataset for each
epoch and for both ISO. The ConvNeXt U-Net achieves the
convergence from about epoch 22 while the standard one
needs 100 epochs to converge. In addition to converging

faster, with the full RVDD method it achieves a higher per-
formance (the gain in PSNR is 0.2dB for the ISO 3200 and
0.3dB for the ISO 12800).

2. Training loss
The loss of our recurrent network with T unrollings is a

weighted sum of T individual L1 losses that are computed
with the denoised frame for each unrolling. We recall that
the output of the network is computed as

ût = F
(
Wt−1,tφ

L
t−1,Wt−1,tut−1, ...

D(ft),Wt+1,tD(ft+1)) , (1)

where ft and ft+1 are two raw noisy frame, D is a de-
mosaicing operator, Wt−1→t and Wt+1→t are two warping
operators to compensate for motion (defined in Equation 3
from the main paper) and φL

t−1 is the feature map from the
last hidden layer (see Section 3 from the main paper for
more details). When training, we run the network on short
videos of T + 1 frames (or T + 2 if we are using the future
frame) to generate T output frames û1, ..., ûT . For the first
output û1 the previous feature map φL

0 is initialized as zero,
and the previous output û0 as the previous noisy raw frame
f0. The loss is computed by

loss ((ût)t=1,...,T , (ut)t=1,...,T ) =

T∑
t=1

λt ∥ût − ut∥1, (2)

where the weights λt are non-negative and sum to one. The
weights control the importance given to each output. We
vary the weights during training. For the first 20 epochs,
we only train the first unrolling by setting all the weight on
the first output, i.e. λ1 = 1 and λt = 0 for t ≥ 1. This is
mainly to speed up the training, as we only need to compute
the first unrolling. Starting at epoch 20 to 25, we gradually
shift the weights until 90% of the weight is given to the last
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Figure 1: Network diagram of the U-Net.

Figure 2: Structure of the ConvNeXt block [5].

Lin. RGB PSNR Lin. RGB SSIM
φL
t−1 ft+1 3.2k 12.8k 3.2k 12.8k

RVDD-basic ✗ ✗ 44.74 40.73 0.989 0.977
✓ ✗ 44.99 41.05 0.989 0.979
✗ ✓ 45.05 41.14 0.989 0.979

RVDD ✓ ✓ 45.29 41.45 0.990 0.981

Table 1: PSNR and SSIM in the linear RGB domain for the differ-
ent frameworks for handling the recurrence (see Section 2 in the
main paper) in the validation set of our synthetic dataset. We con-
sider two ISO levels taken from the CRVD dataset. Best results
are in bold.

unrolling and the remaining 10% is split uniformly between
the first T−1 unrollings, i.e. λt =

1
10(T−1) , t = 1, ..., T−1

and λT = 9
10 . The rationale for these weights is to give

more importance to the last unrolling, as it is the one more
similar to the steady state of the networks operation in a
video, while still giving some weight to the first unrollings,
as they are necessary to reach that steady state.

3. Quantitative results on the linear RGB do-
main

In the main paper, we reported the PSNR and SSIM val-
ues on average in the validation set and in the sRGB domain
(after a post-processing pipeline). In this section, we report
the PSNR and SSIM values in the linear RGB domain (no
post-processing). Table 1 shows the effect of the different
inputs to our RVDD network on our dataset with the two
ISO levels. Recall that RVDD-basic denotes the network
with only two inputs: the current noisy frame ft and the
previous RGB output ût−1, whilst RVDD (the full configu-
ration) includes the features from the previous frame φL

t−1

and the future frame ft+1. In Table 2, we compare our
method with the FastDVDnet-JDD described in the main
paper. In Table 3, we compare the standard U-Net with the
ConvNeXt U-Net.

4. Visual results on real data
In this section, we present the results obtained by

applying RVDD with the ConvNeXt U-Net on the out-
door sequences of the CRVD [7] dataset. We compare
against two methods: FastDVDnet-JDD and Multi-Frame-
to-Frame (MF2F) [1]. In [1], the authors proposed a self-
supervised framework for fine-tuning a pre-trained denois-
ing network to a new noise type. They achieve joint denois-
ing and demosaicing by demosaicing the noisy raw images
(using [4]) and then fine-tuning a FastDVDnet on the de-
mosaiced raw (initially trained for handling additive white
Gaussian noise). The results are shown in Figure 4. Videos
of noisy sequences and of results obtained with the different
methods are attached to the supplementary material. RVDD
recovers more details than FastDVDnet-JDD. Globally it
has a better reconstruction of the textures.
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Figure 3: Evolution of validation PSNR during training of our RVDD and RVDD-basic models with the standard U-Net and the convNeXt
U-Net. On the left, ISO 3200 and right ISO 12800.

network W ft+1 trained on
non-stabilized stabilized

Lin. RGB PSNR Lin. RGB SSIM Lin. RGB PSNR Lin. RGB SSIM
3.2k 12.8k 3.2k 12.8k 3.2k 12.8k 3.2k 12.8k

FastDVDnet-JDD non stab. 43.06 38.35 0.983 0.963 43.99 39.51 0.986 0.970
VDD ✗ ✗ non stab. 43.18 38.88 0.984 0.967 43.60 39.36 0.985 0.970
VDD ✗ ✓ non stab. 43.18 38.89 0.984 0.966 43.83 39.63 0.986 0.971
VDD ✓ ✗ non stab. 44.04 39.88 0.986 0.973 44.35 40.09 0.987 0.974
VDD ✓ ✓ non stab. 44.56 40.55 0.988 0.976 44.88 40.77 0.989 0.977
RVDD-basic ✓ ✗ non stab. 44.74 40.73 0.989 0.977 45.09 40.97 0.990 0.979
RVDD ✓ ✓ non stab. 45.29 41.45 0.990 0.981 45.56 41.67 0.991 0.982
FastDVDnet-JDD stab. 42.86 38.40 0.982 0.963 44.18 40.20 0.986 0.974
VDD ✗ ✗ stab 43.03 38.78 0.983 0.966 44.08 39.80 0.986 0.972
VDD ✗ ✓ stab 42.93 38.57 0.983 0.964 44.23 40.04 0.987 0.973
VDD ✓ ✗ stab 43.97 39.81 0.986 0.972 44.43 40.13 0.988 0.974
VDD ✓ ✓ stab 44.51 40.49 0.988 0.976 45.01 40.85 0.989 0.978
RVDD-basic ✓ ✗ stab 44.66 40.72 0.989 0.978 45.19 41.12 0.990 0.980
RVDD ✓ ✓ stab 45.14 41.33 0.990 0.980 45.70 41.76 0.991 0.982

Table 2: PSNR and SSIM in the linear RGB domain in the validation set of our synthetic dataset. We compare our JDD adaptation of
FastDVDnet [6] with six variants of our network: the two frame recurrent RVDD, RVDD-basic and four non-recurrent networks labeled
VDD: with/without warping (W) and with/without the future frame ft+1.

Architecture Lin. RGB PSNR Lin. RGB SSIM
3.2k 12.8k 3.2k 12.8k

RVDD-basic U-Net 44.74 40.73 0.989 0.977
RVDD-basic ConvNeXt U-Net 44.73 40.83 0.989 0.977
RVDD U-Net 45.29 41.45 0.990 0.981
RVDD ConvNeXt U-Net 45.49 41.73 0.990 0.982

Table 3: PSNR and SSIM in the linear RGB domain for RVDD us-
ing the standard U-Net and our improved version with ConvNeXt
blocks in the validation set of our synthetic dataset. We consider
two ISO levels taken from the CRVD dataset. Best results are in
bold.

5. Modified version of FastDVDnet for JDD

In the main paper, we adapted FastDVDnet [6] for han-
dling the JDD task. We proposed a simple adaptation of

FastDVDnet by demosaicing the frames before feeding the
network. This version corresponds to an early demosaicing
approach (see Figure 5(a)). We also tested another adap-
tation in which we applied a late demosaicing. For this
modified the input layer of the first U-Net so that it takes
mosaiced frames packed in four channels at half-resolution.
At the final layer of the first U-Net, a twelve-channel image
is produced and then upscaled with a non-trainable upsam-
pling (pixel shuffle) into a three-channels image. In order
to apply the skip connection at the original scale, the mid-
dle frame of the input temporal window is demosaiced us-
ing the Hamilton-Adams demosaicing [3, 2]. The second
U-Net then takes three-channel frames and outputs a three-
channel frame as in the early demosaicing version. This
modified architecture is trained with the same hyperpame-
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Figure 4: Results obtained with our joint denoising and demosaicing method (RVDD) on real raw videos from the CRVD dataset [7]. For
comparison we show results obtained with the self-supervised video denoising method MF2F [1] and with an adaptation of FastDVDnet
[6] to JDD.

ters as the first version (early demosaicing) presented in the
main paper, except the patch size which is doubled for the

late demosaicing so that the first U-Net of both adaptations
work at the same resolution. In Figure 5(b), we show a dia-
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Figure 5: Modified architectures of FastDVDnet [6] for perform-
ing joint denoising and demosaicing. (a) First version (called
early demosaicing) : the raw input packed in 4 channels of half-
resolution are demosaiced using the Hamilton-Adams demosaic-
ing [3, 2], then U-Net 1 and 2 are applied on RGB images as in
the original FastDVDnet [6]. (b) Second version (called late de-
mosaicing): U-Net 1 takes a temporal window of three contiguous
raw frames packed in 4 channels (1), U-Net 1 is followed by an
non-trainable upsampling layer (2) which produces 3 channel im-
ages (pixel shuffling), the 4 channels input frame is demosaiced us-
ing the Hamilton-Adams demosaicing [3, 2] (3) for the final skip
connection. This is repeated for the three possible windows of
three contiguous frames and the three outputs are used as input for
the U-Net 2 which produces the denoised result (4).

gram of the late demosaicing adaptation of FastDVDnet for
JDD.

Both version, late and early demosaicing, attain a very
similar performances. The early demosaicing (explained in
the main paper) has a slightly higher performance, but the
late demosaicking approach offers a lighter alternative.
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