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1. Proof of Theorem 1
Proof. Consider a circle St ∈ R2 centered at zt with ra-
dius δt, the kNN distance of zt with respect to the train-
ing set Z . The maximum likelihood estimate for the prob-
ability of a point being inside St under f0 is given by
k/|Z|. It is known that, as the total number of points
grow, this binomial probability estimate converges to the
true probability mass in St in the mean square sense [1],

i.e., k/|Z| L2

→
∫
St

f0(z) dz as |Z| → ∞. Hence, the

probability density estimate f̂0(zt) = k/|Z|
2πδ2t

converges to

the actual probability density function, f̂0(zt)
p→ f0(zt) as

|Z| → ∞, since St shrinks and δt → 0. Similarly, consid-
ering a circle Sα ∈ R2 around zα which includes k points
with its radius dα, we see that as |Z| → ∞, dα → 0 and
f̂0(zα) =

k/|Z|
2πd2

α

p→ f0(zα). Assuming a uniform distribu-

tion f1(z) = f0(zα), ∀z, we conclude with log
k/|Z|
2πd2α
k/|Z|
2πδ2t

=

log δ2t − log d2α
p→ log f1(zt)

f0(zt)
as |Z| → ∞.

2. Online Anomaly Detection
The classical frame-based formulation for video

anomaly detection does not evaluate the quick detection
performance, which is critical in general in many anomaly
detection applications, including video surveillance. To
this end, we here consider a recently proposed online
event-based formulation [2], which defines a sequence of
successive anomalous frames as an anomalous event. In
[2], a new performance metric, Average Precision Delay
(APD), was proposed to evaluate the quick detection perfor-
mance, which covers the classical AUC metric as a special
case. While the cost is 1 for false negative (misdetection)
and 0 for true positive for computing AUC, the APD metric
uses a more detailed cost function, which penalizes each
true positive with its detection delay (number of frames
detection lags the anomaly onset) and each false negative
with the maximum tolerable delay. APD measures the area
under the alarm precision (number of true alarms/number
of all alarms) vs. normalized average detection delay curve.

In this setup, we present our results only on the Shang-
haiTech dataset as the CUHK Avenue dataset has fewer than
50 anomalous events, which is not enough for a reliable av-
erage performance comparison. A common technique used
by several recent works [4, 3, 7, 9] is to normalize the com-
puted statistic for each test video independently, including
the ShanghaiTech dataset. However, this methodology can-
not be implemented in an online (real-time) system as it
requires the prior knowledge of the minimum and maxi-
mum values the statistic might take. Moreover, many re-
cent methods [3, 5, 8] do not have their implementation
details/code publicly available, while others are end-to-end
[8, 10, 11] and cannot be implemented to work in an online
fashion. Hence, we compare our method with the online
versions of [4, 7, 6].

Our proposed algorithm achieves a better performance
than the other algorithms in terms of quick detection and
achieving high precision in alarms, as indicated by Table 2
in terms of the APD value.

Online Detection
Method APD

Liu et al. [4] 0.504
Morais et al. [7] 0.324

Luo et al. [6] 0.447
Ours 0.675

Table 1. Online detection comparison in terms of the APD metric
[2] on the ShanghaiTech dataset. Higher APD value represents a
better online anomaly detection performance.

3. Computational Complexity

For global monitoring, we consider the scenario in which
the object is variable and the subject is fixed for posi-
tive/negative pairs. To compute the loss, we sample N sub-
jects and K objects, which makes the computational com-
plexity as O(NK). In practice, we are able to run the global
monitoring branch at 10 fps. This can be further improved
by reducing the number of subject/object pairs to be con-
sidered. The local monitoring branch can be run in par-
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Figure 1. Pipeline level output from the local and global branches.

allel at 12 fps, which can be further improved by using a
lightweight pose tracking model. The sequential anomaly
detection algorithm has negligible overhead.

4. Effect of Individual Branches

In Table 2, we compare the branch-wise performance
for Avenue dataset. We notice that the local monitor-
ing branch significantly outperforms the global monitoring
branch. However, this can be attributed to a small percent-
age of anomalies occurring in the Avenue dataset which in-
volve human-object interaction. For example, out of 21 test
videos, 2 videos consist of a person dancing, which cannot
be detected using the global monitoring branch but can be
detected through the pose-based local monitoring branch.
On the other hand, the global branch is able to successfully
detect anomalous cases such as a ”person on grass”, which
does not involve an anomalous pose, and thus is ignored by
the local branch.

We also show the pipeline level output from the global
and local branches in Fig. 1. The output of the global
branch is in terms of the predicted triplet and their scores
whereas the output from the local branch is the reconstruc-
tion error. We see that the global branch outputs ”bike on
road” multiple times due to associating with two different

sections of the crossroads. Here, the anomaly begins at
t = 57, but the local branch detects it much later since the
person is very small and pose estimation is not accurate. On
the other hand, the global branch is able to detect it much
earlier and at the same time gives an interpretable output.
This shows the efficacy of a dual-branch approach.

Effect of each branch
Branch AUC

Global Monitoring Branch 0.46
Local Monitoring Branch 0.71

Table 2. Impact of each branch on the overall performance.

5. Additional Qualitative Interpretability Re-
sults

We provide more interpretability results in Fig. 1 for the
ShanghaiTech dataset. Each row shows interpretation pro-
vided for a successfully detected anomaly. The ground truth
in the dataset only provides labels (nominal or anomalous),
but not the root cause. It is seen in Fig. 2 that the interpreta-
tions provided by the algorithm (in the last column) explain
the root cause. In the last example (third row), the algorithm
raises alarm due to two different object-object interactions
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Figure 2. Anomaly interpretation examples for the proposed approach on the ShanghaiTech dataset. Each row corresponds to a correct
detection case. In the last row, the algorithm provides two interpretations for the detected anomaly.

over the course of anomalous frame sequence. In addition
to the obvious “person on bike” interpretation, the “bike on
road” predicate also triggers alarm in several frames. Inter-
estingly, both the bike itself and its reflection on the glass
window contribute to the bike-on-road alarm.
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