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1. Database

Here, we provide more details of the video portrait data
we used to train and test our proposed model. We thank the
authors of [6, 12, 9, 14] for sharing their video data. As
can be seen in Table 1 and 2, we have used eleven different
video portraits throughout use qualitative and quantitative
experiments, at various resolutions: 256× 256, 512× 512,
1024 × 1024. We denote the number of frames we used
to train each person-specific model by Ntrain, while Ntest

represents the number of test frames. Training frames come
for the beginning of videos and test frames from the end,
as we maintain the original training and test split of data.
Please note that some portraits were used only for the task
of cross-identity reenactment, either as source (Ntrain = 0)
or as target identities (Ntest = 0). The eleven identities are
displayed in Fig. 1.

2. Face and Gaze Tracking

Our proposed method is primarily driven with head pose,
facial expression and eye gaze information. We employ
[11] to extract gaze angles from frames. We recover ex-
pression blendshapes using two different approaches, one
for reconstruction (self-reenactment) and another one for
cross-identity motion transfer (reenactment) experiments.
We observed that GANFIT [7] operates very well when it
comes to expression and shape (identity) disentanglement,
thus we use this tracker throughout cross-identity reenact-
ment. Nonetheless, during self-reenactment, we use the ap-
proach presented in [4], which relies on dense 3D facial
landmarks regressed by RetinaFace [2] and 3DMM fitting
on LSFM [1], as it appears to retain more detailed expres-
sion information from RGB frames in comparison to GAN-
FIT. Moreover, we employ the same tracking method with
[9] to retrieve head pose parameters.

3. Training

For the optimisation of our neural networks we utilise
ADAM [13], with β1 = 0.9, β2 = 0.999 and learning

rate η = 0.0005. We train a new model (set of networks)
for each video portrait, which requires 100K to 150K it-
erations (approximately 18-27 hours) on a single NVIDIA
Tesla V100 PCIe 32 GB, depending on the number of train-
ing frames. We use a batch size of 16. For audio-driven por-
trait synthesis, we train networks Naud and Natt alongside
the MLP and CNN-based decoder on the task of reconstruc-
tion.

4. Networks Architecture

Our model consists of 1) an MLP network F , 2) a CNN-
based image decoder D, and optionally 3) two networks
Naud and Natt for audio feature prediction. For the archi-
tecture of audio-related networks, please refer to [9].
MLP network F . Our proposed MLP network consists of
eight consecutive linear layers, each followed by a ReLU
activation function. Similarly to NeRF [15], we use a skip
connection in the fourth layer. The MLP’s input vector
emerges from the concatenation of the position γ(x), head
pose γ(pi) and gaze γ(gi) parameters, all of which are po-
sition encoded, as well as the expression parameters ei and
learnable latent code vi. In the output, a simple linear layer
predicts colour c and feature vector f . Please see Fig. 2 for
more details.
CNN-based decoder D. Our adopted image decoder is
based on the decoding part of the generator proposed orig-
inally in pix2pixHD [18]. It receives a feature map of res-
olution Hf ×Wf , assembled from the feature vectors cre-
ated by the MLP, and uses it to synthesise a photo-realistic
image. It is made up of six consecutive residual layers fol-
lowed by two up-sampling layers and a final output layer
that hallucinates the output image of resolution H × W ,
where H = 4Hf and W = 4Wf . The architecture of our
decoding network is displayed in Fig. 3. Please note that
for the ablation study with the CNN decoder only, we use a
slightly different architecture. That is, we replace the resid-
ual layers with up-sampling layers, which receive a 4 × 4
tile of the pose, expression and gaze parameters (replicated
along the spatial dimensions) and transform it to an image.



(a) ID. 1 (b) ID. 2 (c) ID. 3 (d) ID. 4

(e) ID. 5 (f) Obama (g) May (h) Biden

(i) Macron (j) Mitsotakis (k) Trudeau
Figure 1. Illustration of the different identities (video portraits) we used throughout our experiments.

Portrait Resolution Ntrain Ntest Experiments Data Source

ID. 1 512× 512 5513 1000 reconstruction NerFACE [6]
ID. 2 512× 512 5518 1000 reconstruction NerFACE [6]
ID. 3 512× 512 5441 1000 reconstruction NerFACE [6]
ID. 4 256× 256 0 2380 reenactment DVP [12]
ID. 5 256× 256 18138 0 reenactment DVP [12]

Obama 512× 512 7272 728
audio-based reconstruction

AD-NeRF [9]
ablation study

May 512× 512 5500 550 audio-based reconstruction Head2Head [14]
Biden 512× 512 5301 454 ablation study Head2Head [14]

Table 1. Details of the video portraits we used throughout the experiments in the main script.



Figure 2. The architecture of our MLP network is based on the one originally proposed for NeRF [15], with the addition of a linear output
layer that returns the RGB colour c and feature vector f . Here, γ denotes the function of positional encoding.

Figure 3. The architecture of our decoder is based on the generator of pix2pixHD [18], with six residual layers followed by two up-sampling
layers and a final output layer. For more details on the structure of the residual block, please refer to [18].

Portrait Resolution Ntrain Role Data Source

Trudeau 512× 512 0 driving Head2Head [14]

Biden 512× 512 5755 target Head2Head [14]

Macron 1024× 1024 0 driving Head2Head [14]

Mitsotakis 1024× 1024 10934 target Head2Head [14]

Table 2. Details of the video portraits we used for the extra reen-
actment experiments that appear in the supplementary video.

5. Evaluation Metrics

Here, we provide more information on the evaluation
metrics that we used in order to validate of our method’s
performance and compare it with related state-of-the-art
methods.
L1-distance. This is the most basic means of evaluating
the reconstructive performance of methods. Given a ground
frame Ii ∈ [0, 1]H×W×3 and the corresponding generated
frame Ĩi, L1-distance is given by ||Ii − Ĩi||1.
LPIPS. By definition, L1 is a simple shallow function that

assesses reconstruction only on pixel level. It has been
shown that using feature maps for the evaluation of image
reconstruction is more consistent with human perception.
These feature maps are extracted from images with the as-
sistance of pre-trained deep neural networks. Here, we em-
ploy the widely-used LPIPS [19] metric as a perceptual sim-
ilarity score between the ground Ii and synthetic frames Ĩi,
which is calculated based on visual feature maps.
FID. We use FID score [10, 16] in order to measure the sim-
ilarity between the dataset of ground truth frames and the
dataset of frames generated by each method. This score pro-
vides an insight into the visual quality and photo-realism of
synthesised frames, as this is an established means of mea-
suring the quality of images created by generative models,
such as GANs [8].
FVD. Since we actually generate video data, it is essen-
tial to evaluate the performance of different methods based
on a metric that takes into account the temporal coherence
among frames. For that, we assess the plausibility of gen-
erated videos with FVD [17], as this metric has shown to
correlate well with human judgment on visual quality and
photo-realism of video data.



CSIM. This is a metric for calculating identity preservation
during reenactment. Given that cross-identity motion trans-
fer entails the problem of transferring characteristics of the
driving identity to the generated frames of the target person,
it is of upmost importance to calculate how well different
methods handle identity preservation. For that, we use an
identity recognition network, namely ArcFace [3], for the
computation of embedding vectors from the generated and
real images of the target actor. Then, we compute the cosine
similarity between embedding vectors coming from real and
synthetic frames.
Expression Distance. One of the most important aspects of
reenactment lies in successful expression transfer. In order
to evaluate the generated expressions numerically, we em-
ploy DECA [5] for the extraction of expression parameters
from driving and generated frames. Then, we compute the
L1-distance between each pair of expression vectors, com-
ing from the driving and synthetic data.
Pose Distance. Similarly to expression, we validate the ac-
curacy of systems on head pose transfer. Again, we pass the
driving and corresponding generated frames through DECA
[5]. This yields a sequence of driving head rotation matrices
Rt and synthetic head rotation matrices R̃t, t = 1, . . . , T.
Then, we compute head rotation distance as

θpose = arcos
( tr(R̃tR

⊤
t )− 1

2

)
(1)

and convert angle θpose to degrees.
Gaze Distance. As suggested by the uncanny valley effect,
accurate gaze synthesis is very important when creating re-
alistic human faces. We measure gaze transfer on the task of
reenactment by first extracting driving gaze vectors gt and
synthetic gaze vectors g̃t, t = 1, . . . , T with the assistance
of a state-of-the-art gaze detection system [11]. After that,
we measure the distance between gaze vectors as the angle
between them:

θgaze = arcos
( g⊤

t g̃t

||gt||2||g̃t||2

)
. (2)

Finally, we convert θgaze to degrees.
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