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Organization. In the supplementary material, we pro-
vide:

• a detailed description of TAP-MOS, a task-agnostic
extension of MOS used as a baseline in most of our
experiments (Section 1).

• analysis of well-known OOD detection methods (Sec-
tion 2).

• details on synthetic dataset generation (Section 3).

• discussion on the appropriateness of Mahalanobis dis-
tance, choice of GMM clustering in TAPUDD and tun-
ing of hyperparameters (Section 4).

• extended description of experimental settings (Sec-
tion 5).

• additional results on a synthetic dataset for binary clas-
sification, results on conventional OOD datasets for
multi-class classification tasks, and results on anomaly
detection task (Section 6).

• quantitative results with other metrics, including
AUPR, FPR95 (Section 7).

1. Task Agnostic and Post-hoc MOS (TAP-
MOS)

We present an extension of MOS [9] which was proposed
for OOD detection in large-scale classification problems.
Since we aim to present a baseline that does not rely on
the label space, we develop a clustering-based OOD detec-
tion method, Task Agnostic and Post-hoc Minimum Oth-
ers Score (TAP-MOS), in the features space. The training
datasets’ features extracted from a model trained for a spe-
cific task are given as input to the TAP-MOS module. TAP-
MOS module partition the features of in-distribution data
into K clusters using Gaussian Mixture Model (GMM) with
“full” covariance and train a cluster classification model.
Motivated by the success of MOS, we perform group based
learning and form K groups, G1, G2, ..., GK, where each

group Gk comprises of samples of cluster k. A new cat-
egory “others” is then introduced in each group Gk. The
class labels in each group are re-assigned during the train-
ing of cluster classification model. “Others” class is defined
as the ground-truth class for the groups that do not include
cluster c. Following MOS [9], we calculate the group-wise
softmax for each group Gk as:
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The training objective for cluster classification is the sum

of cross-entropy losses across all the groups:
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where ykc and pkc (x) denote the re-assigned class labels and
the softmax probability of category c in Gk, and N denotes
the total number of training samples.

For OOD detection, we utilize the Minimum Others
Score (MOS) which uses the lowest “others” score among
all groups to distinguish between ID and OOD samples and
is defined as:

STAP-MOS = − min
1≤k≤K

pkothers(x). (3)

To align with the conventional notion of having high score
for ID samples and low score for OOD samples, the nega-
tive sign is applied. We hypothesize that TAP-MOS will fail
when samples are near or away from the periphery of all
clusters because it performs One-vs-All classification and
detect a sample as OOD only if it is detected as “others”
class by all groups. We validate our hypothesis by conduct-
ing experiments on the synthetic datasets in Section 4.1 of
the main paper.



Figure 1. ID score landscape of the existing representative post-hoc OOD detection methods (Mahalanobis, and MOS) on synthetic 2D
binary and multi-class classification datasets. A sample is regarded as OOD when it has a low ID score. The Pink Points represent
the in-distribution data; Red Triangles and Orange Diamonds represents OOD samples. Results demonstrate that MOS fails to detect
samples near or away from the periphery of all classes (e.g., Red Triangles) and Mahalanobis fails to detect samples near the ID classes
(e.g., Orange Diamonds) as OOD.

2. Analysis of Well-known OOD Detection
Methods

MOS. MOS [9] performs One-vs-All classification and
detects a sample as OOD only if it is detected as the “oth-
ers” class by all groups. We hypothesize that MOS will fail
to detect samples near or away from the periphery of all
classes as OOD. This is because the groups in the corner
will detect samples on the same side of the decision bound-
ary of the one vs. all groups classification as ID. We now
conduct an experiment on the 2D synthetic datasets for bi-
nary and multi-class classification tasks to determine if our
hypothesis holds true. More details on synthetic datasets
are provided in Section 3. Fig. 3a and Fig. 3b presents
the ID score landscape of MOS in binary class and multi-
class classification tasks respectively. The Pink Points rep-
resent the in-distribution data; Red Triangles and Orange
Diamonds represents OOD samples. Results demonstrate
that MOS works very well when the OOD samples are in
between multiple classes (can be seen in blue color in 2-
D plane). However, it fails to detect samples near or away
from the corner classes (denoted by Red Triangles).
Mahalanobis. Mahalanobis OOD detector [11] approxi-
mates each class as multi-variate gaussian distribution with
tied covariance. However, in reality, the features can be cor-
related differently in different classes. In particular, features
of a few classes can be correlated positively, and features of
some other classes might be correlated negatively. We hy-
pothesize that Mahalanobis might fail to detect OOD sam-
ples near the ID classes in such cases. We conduct an exper-
iment in the same manner as above to test our hypothesis.
Fig. 3a and Fig. 3b presents the ID score landscape of Ma-
halanobis in binary class and multi-class classification tasks
respectively. Results demonstrate that Mahalanobis works
very well when the OOD samples are located far away from
the ID classes but it fails to detect samples located near the

ID classes (denoted by Orange Diamonds).
SSD. SSD [18] is an outlier detector based on unlabeled
in-distribution data which utilizes self-supervised represen-
tation learning followed by Mahalanobis distance based
OOD detection. In self-supervised representation learning,
SSD uses NT −Xent loss function from SimCLR [2]
which utilizes multiple data augmentation techniques. SSD
has achieved remarkable OOD detection performance and
even outperforms several supervised OOD detection meth-
ods. However, we hypothesize that when OOD samples are

Figure 2. Impact of varying intensity of brightness in data augmen-
tation on the OOD detection performance of SSD.

from the same distribution as the augmented data, the model
might fail to detect them as OOD. This can be problematic
in several real-world tasks. For instance, in 3D vision, it
is desirable to detect the shapes rotated by more than some
threshold. However, if we used the rotation technique in
data augmentation, SSD might fail to detect the samples as
OOD. This can also lead to severe consequences in safety-
critical applications. We conduct an experiment to deter-
mine if our hypothesis holds true. We used the CIFAR-10



dataset for self-supervised training in SSD and used data
augmentation similar to SSD and varied the range of inten-
sity of brightness used in data augmentation. Then, we eval-
uate the SSD model in the NAS setup. More specifically, we
shift the brightness of CIFAR-10 samples with varying lev-
els of intensities and evaluate the performance of SSD when
trained with augmentation of brightness. Fig. 2 presents the
impact of using different intensities of brightness in data
augmentation on the performance of SSD for NAS detec-
tion. We observe that when the brightness intensity from
0.6 to 1.4 is used in data augmentation, the SSD model
fails to detect samples from these brightness intensities as
OOD. Further, when the brightness intensity from 0.0 to 2.0
is used in data augmentation, the SSD model even fails to
detect extraordinarily dark and light images. This demon-
strates that SSD fails to detect OOD samples from the same
distribution as the augmented data. Similar to SSD, OOD
detection methods that utilizes data augmentation for self-
supervised learning might fail in scenarios where the model
encounters OOD samples from distribution same as the dis-
tribution of augmented dataset. Therefore, we do not com-
pare our approach against such OOD detection methods in
all the experiments.

We observe that MOS, Mahalanobis, and SSD do not
perform well in certain scenarios. Moreover, MOS and Ma-
halanobis OOD detection methods require the class label
information of the training datasets. Therefore, they can-
not be directly used for OOD detection in tasks other than
classification. This motivates the necessity of an unsuper-
vised OOD detection method that is not only task-agnostic
and architecture-agnostic but also addresses the scenarios
where MOS, Mahalanobis, and SSD do not perform well.

3. Synthetic Dataset Generation

(a) Binary Classification dataset (b) Multi-class Classification 
datasetFigure 3. 2-D synthetic datasets for (a) binary classification and

(b) multi-class classification tasks.

We generate synthetic datasets in R2 for binary and
multi-class classification tasks, as shown in Fig. 3. The in-
distribution (ID) data x ∈ X = R2 is sampled from a Gaus-
sian mixture model. All the samples except the ID sam-
ples in the 2-D plane represent the OOD samples. Dataset

Dataset Cluster Mean (µx, µy) Covariance

Binary Cluster 1 (5.0, 8.0) ([1.0, -0.8], [-0.8, 1.0])
Cluster 2 (14.0, 8.0) ([1.0, 0.8], [0.8, 1.0])

Multi-class

Cluster 1 (1.5, -1.0) ([0.2, -0.3], [-0.2, 0.2])
Cluster 2 (1.5, 3.0) ([0.1, 0.0], [0.0, 0.1])
Cluster 3 (5.0, 5.0) ([0.4, 0.0], [0.0, 0.4])
Cluster 4 (-2.5, -1.0) ([0.1, 0.2], [0.2, 0.1])
Cluster 5 (4.0, 1.0) ([0.4, 0.0], [0.0, 0.01])
Cluster 6 (-1.0, 4.3) ([0.02, 0.0], [0.0, 0.7])
Cluster 7 (5.0, -3.0) ([0.5, 0.4], [0.3, 0.1])
Cluster 8 (-1.0, -4.0) ([0.1, 0.0], [0.0, 0.1])

Table 1. Mean and covariance per cluster used for generating
dataset for binary and multi-class classification tasks.

for binary classification and multi-class classification tasks
comprises of 2 and 8 clusters, respectively. For each clus-
ter with mean (µx, µy) and covariance, 3000 and 500 data
points are sampled in binary and multi-class classification
tasks, respectively. More details on the mean and covari-
ance of each cluster is provided in Table 1.

4. Discussion
Appropriateness of Mahalanobis distance (MD). Given
density estimation in high-dimensional space is a known in-
tractable problem, we view MD as a reasonable approxima-
tion that leads to empirical efficacy. Moreover, we believe
that MD in TAPUDD is safe since the ensembling mod-
ule does a reasonably simple approximation by aggregat-
ing the MD obtained from GMM with a different number
of clusters. Evaluating the compatibility of our test-time
framework on methods trained with added regularization to
explicitly make Mahalanobis distance more appropriate for
OOD detection [13] can be an interesting future direction to
explore.
Reason for using GMM. We aim to use Mahalanobis dis-
tance to measure the distance between a test sample and lo-
cal training set clusters in the latent space, hence GMM with
full covariance is a natural fit. We compare GMM with K-
means in Fig. 4 and observe that GMM is flexible in learn-
ing the cluster shape in contrast to K-means, which learned
spherical cluster shapes. Consequently, K-means performs
poorly when detecting OOD samples near the cluster. Other
popular clustering methods such as agglomerative cluster-
ing or DBSCAN are less compatible with Mahalanobis dis-
tance and require careful hyperparameter adjustment, such
as the linking strategies for agglomerative clustering or the
epsilon value for DBSCAN.
Tuning of Hyperparameters. Although it is possible to
tune hyperparameters K and ne, our experiments indicate
there is very little need to tune them. We observe that our
approach can effectively detect OOD samples across differ-
ent tasks and datasets as long as K consists of a sufficient
number of diverse clusters (approximately 12) and ne is
equal to more than half of the number of participants in K.
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Figure 4. ID score landscape of TAP-Mahalanobis on synthetic 2D binary and multi-class classification datasets on using K-means and
GMM with full covariance. A sample is deemed as OOD when it has a low ID score. The Pink Points represent the in-distribution data;
Red Triangles and Orange Diamonds represent OOD samples. Results demonstrate that on using K-means, TAP-Mahalanobis fails to
detect OOD samples near the clusters (e.g., Orange Diamonds). However, on using GMM with full covariance, Mahalanobis effectively
detects all OOD samples.
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Figure 5. ID score landscape of TAP-Mahalanobis for different values of K (i.e., number of clusters); and TAPUDD for different ensemble
variations on synthetic 2D binary classification dataset. A sample is regarded as OOD when it has a low ID score. The Pink Points
represent the in-distribution data. Results demonstrate that TAP-Mahalanobis does not perform well for some values of K whereas
TAPUDD with all ensembling strategies perform better or on-par with TAP-Mahalanobis.

We used K = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32] and ne = 8
and observed that the same hyperparameters can be used to
obtain good OOD detection performance in different tasks
and datasets.

5. Experimental Details
For binary classification and regression tasks, we use the

RSNA Bone Age dataset [5], a real-world dataset that con-
tains 12611 left-hand X-ray images of the patient, along
with their gender and age (0 to 20 years). We randomly
split the dataset in 8:1:1 ratio to form train, val, and test
split with 9811, 1400, and 1400 samples, respectively. Fol-
lowing [17], to reflect diverse X-ray imaging set-ups in the
hospital, we vary the brightness factor of the test set be-

tween 0 and 6.5 and form 20 different NAS datasets. In-
distribution data comprises images with a brightness factor
of 1.0 (unmodified images).

Binary Classification. We use a ResNet18 [6] model,
pretrained on ImageNet [3], and add two fully-connected
layers containing 128 and 2 hidden units with a relu activa-
tion. We train the network to classify gender given the x-ray
image. Each model is trained for 100 epochs using SGD op-
timizer with a learning rate of 0.001 and momentum of 0.9,
using a batch size of 64.

Regression. We use a ResNet18 [6] model that is pre-
trained on ImageNet [3] and train it to predict the age given
the x-ray image. After the average pooling layer, we add
two fully-connected layers with 128 and 1 units with a relu



OOD Baselines Ours (Task-Agnostic)

Dataset MSP [8] ODIN [12] Energy [14] MB [11] KL [7] Gram [1] TAP-MB TAPUDD
(K = 8) (Average)

LSUN (R) 91.0 94.1 92.8 99.7 70.3 99.9 96.3 96.4
LSUN (C) 91.9 91.2 93.9 96.7 81.9 97.8 94.5 94.2
TinyImgNet (R) 91.0 94.0 92.4 99.5 73.8 99.7 93.8 94.3
TinyImgNet (C) 91.4 93.1 93.0 98.6 74.1 99.2 94.3 94.5
SVHN 89.9 96.7 91.2 99.1 85.5 99.5 92.8 93.4
CIFAR100 86.4 85.8 87.1 88.2 69.2 79.0 88.2 88.9

Table 2. Comparison of OOD Detection Performance of Resnet34 model trained on CIFAR10 on diverse OOD datasets measured by
AUROC. The hyperparameters of ODIN and the hyperparameters and parameters of Mahalanobis are tuned using a random sample of the
OOD dataset. MB and TAP-MB refers to Mahalanobis and TAP-Mahalanobis, respectively.

Method Network Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Average

VAE - 70.4 38.6 67.9 53.5 74.8 52.3 68.7 49.3 69.6 38.6 58.4
OCSVM - 63.0 44.0 64.9 48.7 73.5 50.0 72.5 53.3 64.9 50.8 58.6
AnoGAN DCGAN 67.1 54.7 52.9 54.5 65.1 60.3 58.5 62.5 75.8 66.5 61.8
PixelCNN PixelCNN 53.1 99.5 47.6 51.7 73.9 54.2 59.2 78.5 34.0 66.2 61.8
DSVDD LeNet 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1 64.8
OCGAN OCGAN 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4 65.6
Reconstruction Error Resnet18 71.5 39.2 68.7 55.9 72.6 54.4 63.3 49.1 71.3 37.6 58.4
MB (K = 1) Resnet18 69.2 66.9 66.3 52.3 74.8 50.7 77.8 52.9 64.0 52.1 62.7

TAP-MB (K = 1) Resnet18 69.2 66.8 66.2 52.3 74.8 50.7 77.8 52.9 64.0 52.1 62.7
TAP-MB (K = 2) Resnet18 73.0 67.3 66.5 50.7 74.4 49.9 74.7 52.4 66.2 52.6 62.8
TAP-MB (K = 3) Resnet18 73.4 68.0 66.9 54.9 74.4 50.2 76.1 51.7 61.3 52.3 62.9
TAP-MB (K = 4) Resnet18 68.1 64.1 63.6 56.6 73.5 48.7 75.3 49.5 54.8 48.6 60.3

Table 3. Comparison of TAP-Mahalanobis with other detectors for anomaly detection task on CIFAR-10 dataset. TAP-MB and MB denotes
TAP-Mahalanobis and Mahalanobis, respectively.

activation. Each model is trained for 100 epochs using SGD
optimizer with a learning rate of 1e − 05, weight decay of
0.0001, and momentum of 0.9, using a batch size of 64. We
also apply gradient clipping with a clip value of 5.0.

The results are measured by computing mean and stan-
dard deviation across 10 trials upon randomly chosen seeds.
We perform all experiments on NVIDIA GeForce RTX
A6000 GPUs.

6. Additional Results

6.1. Evaluation on Synthetic Datasets

TAPUDD outperforms TAP-Mahalanobis. We present
a comparison of TAPUDD against TAP-Mahalanobis on 2-
D synthetic dataset for binary classification task, in con-
tinuation to the discussion in Section 4.1. Fig. 5 presents
the ID score landscape of TAP-Mahalanobis for different
values of K and TAPUDD with different ensemble varia-
tions for binary classification in a 2-D synthetic dataset. The
Pink Points represent the in-distribution data. We observe
that for certain values of K, TAP-Mahalanobis fails to de-
tect some OOD samples. However, all ensemble variations

of TAPUDD effectively detect OOD samples and performs
better, or on par, with TAP-Mahalanobis. Thus, TAPUDD
eliminates the necessity of choosing the optimal value of K.

6.2. OOD Detection in Multi-class Classification

As stated in Section 4 of the main paper, we also eval-
uate our approach for OOD detection in multi-class clas-
sification task on benchmark datasets to further bolster the
effectiveness of our proposed approach. We use the pre-
trained ResNet34 [6] model trained on CIFAR-10 dataset
(opensourced in [11]). We consider the test set as the in-
distribution samples and evaluate our approach on diverse
OOD datasets used in literature (TinyImagenet, LSUN [19],
SVHN [16] and CIFAR100). Table 2 presents the OOD de-
tection performance of our approach and baselines based on
AUROC score. We observe that our task-agnostic and post-
hoc approach performs better or comparable to the base-
lines.

6.3. Anomaly Detection

We evaluate our approach for anomaly detection task in
which one of the CIFAR-10 classes is considered as in-
distribution and the samples from rest of the classes are



considered as anomalous. We train a Resnet18 based auto-
encoder model using MSE loss function which aims to min-
imize the reconstruction error between the output and in-
put image. Since, in this work, we provide a task-agnostic
and post-hoc approach to detect samples from unseen dis-
tribution, we consider that we are given a model trained on
one of the classes CIFAR10 and our objective is to detect
anomalous samples (i.e., samples from other classes of CI-
FAR10). We first compare our approach with two baselines
that does not modify the base architecture. Reconstruction-
error based baseline which rely on reconstruction error to
determine if a sample is anomalous or not. Mahalanobis
distance based detector with number of classes as 1 to de-
tect anomalous samples. Further, we also compare our
approach with various well-known baselines for anomaly
detection, including VAE, OCSVM, AnoGAN, PixelCNN,
DSVDD, OCGAN. Although it is unfair to compare with
these baselines as they have different base models, we com-
pare against these baselines since they are used widely in
literature. We do not compare with other baselines includ-
ing CSI, SSD as they might fail in certain scenarios (de-
scribed in Section 2 of the Appendix). Table 3 presents
a comparison of TAP-Mahalanobis with other detectors for
anomaly detection task on CIFAR-10 dataset. We observe
that our task-agnostic and post-hoc approach is better than
reconstruction-error based baseline. Our approach is also
better than or on-par with other baselines used in the liter-
ature. This demonstrates the effectiveness of our approach
on anomaly detection task.

7. Quantitative Results with Different Perfor-
mance Metrics

Method iNaturalist SUN Places Textures Average

Expected Low Low Low High –

MSP [8] 97.26 94.41 94.12 95.65 95.36
ODIN [12] 97.80 96.23 95.33 96.11 96.37
Mahalanobis [11] 87.35 90.32 90.25 92.52 90.11
Energy [14] 97.62 96.55 95.47 96.04 96.42
KL Matching [7] 97.98 94.11 93.62 97.96 95.92
MOS [9] 99.62 98.17 97.36 96.68 97.96

TAPUDD (Average) 91.87 91.02 90.08 99.68 93.16

Table 4. OOD detection performance comparison between
TAPUDD method and baselines measured by AUPR. Ideally, all
methods should follow the expected results obtained from our
analysis (described in first row in green color) conducted in Sec-
tion 4.4 of the main paper. However, as highlighted in green color,
only Mahalanobis and our proposed approach follow the expected
results. This highlights the failure of existing baselines, including
MSP, ODIN, Energy, KL Matching, and MOS. Further, amongst
all methods following the expected results (highlighted in green
color), our approach is highly sensitive to OOD samples and sig-
nificantly outperforms the baselines.

We report additional metrics to evaluate the unseen dis-
tribution detection performance of baselines and our ap-
proach in binary classification, regression, and large-scale
classification tasks. In Table 5 and Table 6, we compare
the NAS detection performance of baselines and our ap-
proach in binary classification task based on AUPR and
FPR95, respectively. We also report the NAS detection per-
formance of baselines and our method in regression task
based on AUPR and FPR95 in Table 7 and Table 8, respec-
tively. Results demonstrate that our proposed approaches,
TAPUDD and TAP-Mahalanobis are more sensitive to NAS
samples compared to competitive baselines. Further, we re-
port AUPR to evaluate the OOD detection performance of
different methods in large-scale classification task Table 4.
As expected from the analysis conducted in Section 4.4 of
the main paper, the results indicate that our approach detects
samples from the Textures dataset as more OOD compared
to samples from iNaturalist, SUN, and Places (similar to the
way humans perceive).
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Brightness Baselines Ours (Task-Agnostic)
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3.0 80.5±4.5 80.5±4.5 80.4±5.2 95.5±2.3 43.9±2.1 81.0±3.2 80.1±2.1 73.0±7.5 95.8±2.9 95.4±3.2

3.5 82.4±4.3 82.4±4.3 82.3±4.9 97.1±1.9 44.1±2.9 82.8±3.3 81.7±3.0 73.9±8.7 97.1±2.6 96.8±2.7

4.0 84.0±4.2 84.0±4.2 83.8±4.8 97.8±1.5 43.2±3.0 84.2±3.6 83.5±3.8 74.3±9.7 97.8±2.3 97.6±2.3

4.5 85.2±3.7 85.2±3.7 85.1±4.2 98.4±0.9 42.1±3.0 85.5±3.2 84.8±3.7 74.5±10.1 98.3±1.9 98.2±1.7

5.0 86.1±3.3 86.1±3.4 86.0±3.9 98.8±0.6 41.3±2.8 86.4±2.7 86.0±3.6 74.7±10.3 98.7±1.4 98.7±1.1

5.5 86.8±3.4 86.8±3.4 86.6±3.9 99.1±0.4 40.5±2.4 87.1±2.6 87.0±3.4 74.9±10.5 99.0±1.1 99.0±0.8

6.0 87.3±3.4 87.3±3.4 87.2±3.9 99.2±0.3 40.3±2.4 87.6±2.6 88.1±3.4 75.0±10.6 99.1±0.8 99.2±0.6

6.5 87.6±3.3 87.6±3.3 87.5±3.8 99.3±0.3 40.5±2.5 87.9±2.5 88.8±3.5 75.0±10.8 99.3±0.7 99.3±0.5

Average 72.4 71.6 71.5 81.7 46.1 71.8 78.6 65.8 82.0 82.1

Table 5. NAS detection performance in binary classification task (gender prediction) for NAS shift of brightness in RSNA boneage dataset
measured by AUPR. Highlighted row presents the performance on in-distribution dataset. MB and TAP-MB refers to Mahalanobis and
TAP-Mahalanobis, respectively.

Brightness Baselines Ours (Task-Agnostic)

MSP [8] ODIN [12] Energy [14] MB [11] KL [7] MOS [9] Gram [1] TAP-MOS TAP-MB TAPUDD
(K = 2) (K = 2) (K = 2) (Average)

0.0 60.0±49.0 60.0±49.0 60.0±49.0 0.0±0.0 60.0±49.0 60.0±49.0 10.0±30.0 80.0±40.0 0.0±0.0 0.0±0.0

0.2 90.2±1.5 90.2±1.5 90.9±2.2 68.3±13.3 91.4±1.4 90.1±1.4 86.3±6.1 92.3±1.2 62.7±15.2 59.8±15.2

0.4 93.0±1.0 93.0±1.0 93.4±1.4 90.3±3.8 93.4±0.9 93.1±1.2 92.4±1.6 93.6±1.0 88.9±4.4 87.6±4.7

0.6 94.1±0.5 94.1±0.5 94.1±0.8 93.9±1.3 93.9±1.2 94.2±0.7 93.8±0.7 94.6±0.4 93.7±1.4 93.0±1.6

0.8 94.4±0.4 94.4±0.4 94.4±0.6 95.3±0.6 94.2±1.5 94.6±0.6 94.6±0.4 95.1±0.5 95.4±0.7 95.1±0.5

1.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0

1.2 94.8±0.6 94.8±0.6 94.6±0.6 94.0±0.6 94.0±1.7 94.8±0.7 94.7±0.8 94.9±0.6 93.6±0.6 93.5±0.7

1.4 93.5±0.9 93.5±0.9 93.1±0.9 91.0±1.4 93.1±1.6 93.3±1.0 92.9±1.4 94.0±0.7 90.3±2.1 89.7±2.4

1.6 92.0±1.0 92.0±1.0 91.6±1.0 85.4±1.7 91.9±1.7 91.7±1.4 90.2±2.0 93.6±1.1 84.1±3.3 83.2±3.5

1.8 90.2±1.2 90.2±1.2 89.8±1.2 78.6±3.0 91.1±1.3 90.3±1.3 87.6±2.7 93.2±2.1 76.9±5.1 75.5±5.2

2.0 88.4±1.8 88.4±1.8 87.9±1.8 71.5±4.6 89.7±1.7 88.3±1.4 83.9±3.8 92.8±2.9 69.3±6.9 67.4±7.9

2.5 85.7±3.5 85.7±3.5 85.2±3.6 49.6±10.2 88.0±2.5 85.3±3.4 78.1±7.0 91.4±3.9 47.3±13.9 45.7±14.8

3.0 84.2±3.8 84.1±3.8 83.5±4.3 30.1±12.7 86.8±2.8 83.9±3.7 73.8±8.2 90.8±4.5 28.7±17.2 28.0±17.8

3.5 82.8±5.5 82.8±5.5 82.4±6.3 19.9±14.1 86.0±3.9 82.8±5.1 70.3±9.1 90.7±5.6 19.1±17.6 19.3±17.8

4.0 82.3±6.6 82.3±6.6 81.7±7.3 13.4±11.9 85.7±4.8 82.1±6.0 67.8±10.1 90.4±7.1 13.3±15.4 14.4±15.3

4.5 81.7±7.5 81.7±7.5 81.1±7.9 8.0±8.1 85.1±5.1 81.6±6.3 65.6±10.0 91.0±7.1 9.2±12.3 10.0±11.5

5.0 81.0±7.4 81.0±7.4 80.6±7.9 5.0±5.2 84.8±5.0 80.9±6.6 63.5±9.6 91.2±7.3 6.0±9.2 7.1±8.4

5.5 80.7±7.9 80.7±7.9 80.5±8.3 3.2±3.8 85.0±5.1 80.9±6.6 61.5±10.2 91.5±7.6 4.4±7.1 5.0±6.0

6.0 80.2±8.5 80.2±8.5 80.0±8.4 2.3±3.0 84.7±5.6 80.5±7.2 59.7±10.7 91.5±8.2 3.1±5.2 3.7±4.2

6.5 79.8±8.6 79.8±8.6 79.7±9.2 1.9±2.7 84.4±5.7 80.3±7.5 58.7±11.4 91.6±8.2 2.4±4.0 2.7±3.0

Average 86.2 86.2 86.0 49.8 87.9 86.2 76.0 92.0 49.2 48.8

Table 6. NAS detection performance in binary classification task (gender prediction) for NAS shift of brightness in RSNA boneage dataset
measured by FPR95. Highlighted row presents the performance on in-distribution dataset. MB and TAP-MB refers to Mahalanobis and
TAP-Mahalanobis, respectively.



Brightness Baselines Ours (Task-Agnostic)

DE [10] MC Dropout [4] SWAG∗ [15] TAP-MOS TAP-Mahala TAPUDD
(K = 8) (K = 8) (Average)

0.0 100.0±NA 34.9±NA 100.0±NA 74.4±20.8 99.8±0.4 100.0±0.0
0.2 53.9±NA 48.4±NA 51.4±NA 69.2±17.2 89.6±12.8 89.6±6.1
0.4 50.0±NA 51.0±NA 49.4±NA 69.2±16.9 75.6±15.8 68.1±4.8
0.6 50.1±NA 50.4±NA 49.2±NA 64.3±12.3 58.0±8.4 56.3±2.8
0.8 50.2±NA 50.1±NA 49.8±NA 57.3±6.4 51.5±2.3 50.2±0.9
1.0 50.0±NA 49.7±NA 50.0±NA 50.0±0.0 50.0±0.0 50.0±0.0
1.2 50.4±NA 48.7±NA 50.8±NA 49.3±3.6 50.2±0.5 56.2±1.1
1.4 53.6±NA 47.9±NA 54.8±NA 51.0±6.8 51.1±1.2 65.2±2.5
1.6 55.5±NA 46.7±NA 62.1±NA 55.2±10.1 52.0±2.1 75.1±3.0
1.8 60.3±NA 45.4±NA 74.0±NA 61.5±13.5 53.0±3.1 83.2±4.2
2.0 69.9±NA 43.9±NA 83.2±NA 67.2±15.9 55.0±4.6 89.3±4.2
2.5 94.4±NA 40.1±NA 92.3±NA 76.8±16.0 61.0±9.3 96.3±2.0
3.0 98.4±NA 37.4±NA 92.7±NA 83.4±13.2 64.8±11.7 98.5±0.7
3.5 99.3±NA 35.6±NA 94.8±NA 88.5±9.7 68.5±13.2 99.1±0.4
4.0 99.8±NA 34.3±NA 97.2±NA 90.8±6.6 71.3±13.3 99.4±0.3
4.5 100.0±NA 33.4±NA 98.0±NA 91.5±4.6 73.8±12.3 99.6±0.3
5.0 100.0±NA 32.4±NA 98.6±NA 91.4±4.2 77.1±10.7 99.6±0.3
5.5 100.0±NA 32.0±NA 98.9±NA 90.7±4.9 80.2±9.0 99.6±0.3
6.0 100.0±NA 31.7±NA 99.0±NA 89.7±5.8 82.6±8.3 99.6±0.4
6.5 100.0±NA 31.5±NA 99.2±NA 88.6±6.7 84.3±7.9 99.6±0.5

Average 76.8 41.3 77.3 73.0 67.5 83.7

Table 7. NAS detection performance in regression task (age prediction) for NAS shift of brightness in RSNA boneage dataset measured
by AUPR. Highlighted row presents the performance on in-distribution dataset. DE and TAP-MB denotes Deep Ensemble and TAP-
Mahalanobis, respectively. SWAG∗ = SWAG + Deep Ensemble.

Brightness Baselines Ours (Task-Agnostic)

DE [10] MC Dropout [4] SWAG∗ [15] TAP-MOS TAP-Mahala TAPUDD
(K = 8) (K = 8) (Average)

0.0 0.0±NA 100.0±NA 0.0±NA 80.0±42.2 0.0±0.0 0.0±0.0
0.2 91.9±NA 99.2±NA 94.0±NA 74.9±21.6 51.2±27.4 58.9±18.7
0.4 94.6±NA 96.1±NA 94.7±NA 71.4±23.4 69.1±18.4 90.5±2.5
0.6 94.7±NA 95.6±NA 95.0±NA 84.0±9.6 88.9±5.4 94.4±1.0
0.8 95.0±NA 95.6±NA 95.1±NA 91.8±2.8 94.1±1.5 95.4±0.4
1.0 95.0±NA 94.5±NA 95.0±NA 95.0±0.0 95.0±0.0 95.0±0.0
1.2 94.7±NA 95.5±NA 94.1±NA 95.2±1.2 94.5±1.4 92.6±2.1
1.4 89.2±NA 95.6±NA 93.7±NA 92.3±5.6 93.8±2.2 86.0±5.8
1.6 78.8±NA 97.5±NA 88.6±NA 87.4±9.8 92.9±3.1 74.9±9.7
1.8 69.7±NA 98.7±NA 87.5±NA 79.8±16.8 90.3±5.3 62.1±14
2.0 53.3±NA 99.1±NA 81.7±NA 73.5±24.1 88.2±7.0 49.2±18.8
2.5 14.9±NA 100±NA 60.3±NA 63.2±31.1 81.4±12.6 23.6±16.1
3.0 6.9±NA 100±NA 53.6±NA 54.5±29.9 76.7±15.4 8.8±6.8
3.5 2.8±NA 100.0±NA 35.2±NA 43.5±25.6 73.0±17.9 3.9±3.0
4.0 0.8±NA 100.0±NA 20.2±NA 36.6±20.2 69.6±19.0 2.4±2.1
4.5 0.0±NA 100.0±NA 13.4±NA 33.7±17.2 67.3±17.6 1.3±1.6
5.0 0.0±NA 100.0±NA 8.2±NA 32.8±17.5 65.4±16.2 1.2±1.9
5.5 0.1±NA 100.0±NA 5.7±NA 34.6±20.2 61.6±16.0 1.6±3.3
6.0 0.0±NA 100.0±NA 4.5±NA 37.7±23.0 57.7±16.6 2.1±4.5
6.5 0.0±NA 100.0±NA 3.1±NA 41.8±25.9 54.1±17.6 2.5±5.5

Average 44.1 98.4 56.2 65.2 73.2 42.3

Table 8. NAS detection performance in regression task (age prediction) for NAS shift of brightness in RSNA boneage dataset measured
by FPR95. Highlighted row presents the performance on in-distribution dataset. DE and TAP-MB denotes Deep Ensemble and TAP-
Mahalanobis, respectively. SWAG∗ = SWAG + Deep Ensemble.
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