
Supplementary Material for “Holistic Interaction Transformer Network for
Action Detection”

Gueter Josmy Faure1 Min-Hung Chen2 Shang-Hong Lai12
1National Tsing Hua University, Taiwan 2Microsoft AI R&D Center, Taiwan

josmyfaure@gapp.nthu.edu.tw vitec6@gmail.com lai@cs.nthu.edu.tw

In the supplementary material, we aim to provide deeper
technical details about our framework, and show more qual-
itative results.

1. More Technical Details

1.1. Temporal Interaction (TI): Memory retrieval

As stated in the paper, we use a memory span S = 30
and the total number of cached frame features passed to the
TI module is 2S + 1 (features of the current frame and 30
frames from each side of the current frame). Inspired by [4]
and [5], we keep a cached memory pool M with temporal
person features, and at the end of each iteration, we update
the cached person features. This dynamic approach does
not increase the computational cost as the number of frame
increases. It also allows us to train the model end-to-end
since we don’t need to pre-train and freeze memory features
as is the case with [2] and [1].

1.2. How we chose QKV for the interaction modules

By definition of Cross Attention, the query should stem
from the main features and the key and value from the
helping features. In our RGB stream, we aim to model
interaction between the target actor and the supporting
actors (when available) and the context (object and hands).
Therefore, the target person is constitutes our main feature.
The other features serving as key and and value help us
find better representations for the person features (query).
Specifically, the hands interaction sub-network outputs
better person features after looking at how the target person
interacts with the hand features. Theoretically, the features
that will be passed to the final classifier should be the query.

1.3. Intra-Modality Aggregation

The intuition for the intra-modality aggregation compo-
nents zr and zp is to filter and pass only the best of the pre-
viously computed features (including the previous block’s

output and all other interaction blocks) to the next inter-
action module. We experimented with channel-wise con-
catenation followed by convolution, feature average, and
weighted sum to achieve this. The first is more compu-
tationally expensive (Convolution on a very high dimen-
sional vector); the second is straightforward but assumes
every feature is equally important. Therefore, we chose to
use the weighted sum approach. The only feature fusion
mechanism we found in the literature is channel-wise con-
catenation followed by PCA. However, it suffers from the
same shortcomings as the concatenation + convolution ap-
proach. Many initialization schemes came to mind, espe-
cially Kaiming and Xavier’s initializations. However, they
do not work well for this task because they would magnify
or reduce the magnitude of our input instead of letting the
model learn as it sees fit. We ruled out random initialization
since we want every feature to be equally weighted initially.
Learning from scratch usually requires small weights, there-
fore we tried −k× ln(10) with k taking values 2, 5, 7, then
settled for k = 5 (initial weights ≈ −11.5).

1.4. Implementation details for AVA and Multi-
Sports

We train AVA with two different activation functions for
the classifier. For pose actions, we use a softmax classifier
since there can only be one pose for each person. AVA is
designed such that one person can have up to three of both
person interaction and object interaction labels. Therefore,
we use a sigmoid activation for person-interaction-related
classes and another sigmoid for object-interaction-related
ones. The network is trained for 110k iterations, with the
first 2k iterations serving as linear warmup. We use a base
learning rate of 0.0004, decreasing by a factor of 10 at it-
erations 70k and 90k. We use the SGD optimizer and a
batch size of 16 to train the model on 8 GPUs. At infer-
ence, we predict action labels for human bounding boxes
detected by the Faster-RCNN [3] instance detector with a
confidence threshold of 0.8. We follow the same configura-
tions as AVA to train MultiSports, except for the activation
functions. MultiSports does not have overlapping actions;

1



therefore, we only use softmax activation for the classifier.

2. Extended Qualitative Results
All of the qualitative results presented here are based on

frames extracted from the J-HMDB dataset. Ours refers to
our proposed HIT network, and AIA is an interaction mod-
eling framework presented in [5]. For a fair comparison,
we implement AIA on top of the same backbone we use
for our model. With Figure 1, we want to illustrate how
our interaction framework compares to AIA [5] in terms of
action sequence detection. As the subject is climbing the
stairs, her action becomes more an more apparent to our
model and the confidence score given to the action sharply
increases. However, AIA’s confidence score stays stagnant.
Such a result highlights the strength of our temporal inter-
action modeling approach.

Figure 1: Temporal Interaction. Even though the encir-
cled part is the only noticeable difference between frames
t(left) and t + 1(right), our model upgrades the confidence
score, as it progresses through the video.

In Figure 2a, AIA misclassifies “brush hair” as “wave”.
Looking at the whole video, any human would detect that
the subject is brushing their hair. However, it’s not clear
for that particular frame. Our model, with strong tempo-
ral support and atomic interaction modeling, is able to cor-
rectly detect this action. Figure 2b is challenging since the
“throw” action that is happening here is competing with the
actions “stand”. Still, our model gives the bulk of the confi-
dence score to the correct action label. Figure 2c is blurry,
just like many of the frames that fall within the “jump”
class. Pose features comes in handy for such actions. We
can also see from Figure 3 that for that particular action
class, our method significantly outperforms AIA. Figures
2d to 2f corroborate the arguments that pose interaction
(2d, 2e) and hand interaction (2f) are essential for accurate
atomic action detection.

Figure 3 is a detailed per-class comparison table between
our method and AIA. Our method significantly outperforms
AIA on challenging hand-related classes such as “throw”,
“catch” and “wave”. It also registers strong performance
against classes with fast movements (“jump”, “run”). Over-
all, our HIT network outperforms AIA on every class, pro-
viding a significant upgrade on current interaction frame-

works used in the literature.

2.1. Failure cases

Most of the failure cases for our method fall into one of
three categories. The first one is similar-looking classes.
Classes such as “throw” and “catch” usually share the same
pose signature and are visually identical. In Figures 4a
and 4b, we see how close the class “throw” can be to the
class “catch” and “kick ball”, respectively. Looking at these
frames, any human could misclassify these actions. For
these kinds of classes, memory modeling could help. How-
ever, it is not guaranteed to work every time. To clear the
“throw”-“catch” confusion, the question the memory fea-
tures has to answer is the following: is the object coming
from or heading to the person’s hands? The second com-
mon failure has to do with incorrectly labeled classes. For
instance, a person standing up is not a person who stands.
Someone might kneel while standing up, as shown in Figure
4c. However, for the J-HMDB dataset, the label is the same
throughout the video. Therefore, the act of kneeling while
standing up is considered “stand” and should be classified
as such even though it is visually wrong. The third category
most methods struggle with is occlusion (see Figure 4d).
Playing golf and swinging a baseball are almost identical,
with the key difference being the object the actor is using.
Is it a baseball bat or a golf club? In this case, however, the
object is occluded. Therefore, the model finds it difficult to
differentiate between “golf” and “swing baseball.”

How should we then go about solving these issues? In
our case, we try and aggregate as much information as pos-
sible. However, having so much information is costly. The
best answer to these problems would be better temporal sup-
port, but that would raise another question: how do we de-
fine “better temporal support”?. While some might advo-
cate for more extended temporal support, it would increase
the computation overhead while not necessarily translat-
ing into higher detection accuracy. Some actions need
long temporal support, some need very little, and others
need none; therefore, deciding how much memory to keep
around is challenging. And if we keep a longer memory
span, the need to compress the feature would be more press-
ing, and most existing compression methods are lossy.

3. Complexity analysis

We perform a mini-experiment to determine the FPS of
our model with different settings. We could not compare
with other frameworks since they do not report these num-
bers. The backbone has a FPS of around 16, and paired with
AIA [5], it is reduced to 13.66. Our model is marginally
more complex than AIA due to the added features. How-
ever, it can be justified by the considerable improvements
in accuracy.

2



(a) AIA miclassifies the action in this
frame as “wave”.

(b) Frame with the action class “Throw”
where the object being thrown is unde-
tected.

(c) Blurry frame, typical of the action
“jump”. The second most challenging
class in J-HMDB.

(d) A blurry frame but with clear pose sig-
nature.

(e) Frame from a video game. AIA evenly
distributes the score between many differ-
ent classes.

(f) “catch” is strongly hand-related.

Figure 2: More Qualitative results. Comparison with AIA

Model frame@0.5 FPS

Backbone 58.85 15.97

Backbone + AIA[5] 77.25 13.66
Backbone + Ours 83.81 12.37

Table 1: Performance and FPS comparison between the
video backbone, AIA and our framework.

References
[1] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid net-
works for object detection. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 2117–
2125, 2017.

[2] Junting Pan, Siyu Chen, Mike Zheng Shou, Yu Liu, Jing
Shao, and Hongsheng Li. Actor-context-actor relation net-
work for spatio-temporal action localization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 464–474, 2021.

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28:91–99, 2015.

[4] Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob
Fergus. End-to-end memory networks. In C. Cortes, N.

Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015.

[5] Jiajun Tang, Jin Xia, Xinzhi Mu, Bo Pang, and Cewu Lu.
Asynchronous interaction aggregation for action detection.
In European Conference on Computer Vision, pages 71–87.
Springer, 2020.

3



Figure 3: Per-class frame mAP comparison with AIA.

4



(a) Confusion between the classes “throw” and “catch”. (b) Confusion between the classes “throw” and “kick ball”.

(c) The ground-truth is incorrect in this case. (d) Due to the partial occlusion, “swing baseball” and “golf”
look almost identical.

Figure 4: Failure cases. Most failure cases are due to similar-looking classes (a and b), incorrectly labeled classes (c), and
partial occlusion (d).

5


