Rethinking the Data Annotation Process for Multi-view 3D Pose Estimation
with Active Learning and Self-Training
Supplementary Material

Qi Feng®, Kun He

, He Wen

, Cem Keskin, and Yuting Ye

Meta Reality Labs

{fung, kunhe, hewen, cemkeskin, yuting.ye}@meta.com

Ground Truth Heatmap Prediction
Figure 1: [Illustration of entropy-based single-view AL
strategies: Best vs. Second Best (BSB) and Multiple

Peak Entropy (MPE). Let the normalized predicted heatmap
for keypoint p be HP, and LP = {I’} be its local
peaks. Mgsp o, H(Y) — H(IY) and Mupe =

>, iy — Pr(1?) log Pr(if).

This supplementary material provides details and addi-
tional ablation studies of supporting experiments that are not
presented in the main paper. In the following, we first present
prior works on active learning for single-view human pose
estimation problem, which is discussed briefly in Sec. 3.
Then, we present the visualizations of the pose clusters used
in Fig. 6 in the main paper. Finally, we present our main
results in the main paper (Fig. 3, 4 and 5) from a different
perspective to give a complete picture of the proposed meth-
ods.

1. Prior Works on Single-view AL for Human
Pose Estimation

The 2D heatmap representation in our setup for pose es-
timation naturally lends itself to entropy-based formulations,
since a heatmap encodes uncertainty in the model’s predic-
tion, and can be normalized into a probability distribution

over the 2D grid using the softmax operator. For a predicted
heatmap H* of keypoint k, let L¥ = {I} 15, ...} be a set of
2D coordinates of local peaks obtained by applying a local
maximum filter to A%, with I¥ being the argmax, and so on.
In the work of Liu and Ferrari [ 1], several entropy-based met-
rics are proposed, and a corresponding AL strategy is defined
by sampling top-scoring images under each metric. We now
review these metrics. A visual illustration of these metrics is
shown in Fig. 1.

1.1. Best vs. Second Best (BSB)

The Best vs. Second Best metric [3] is based on a margin
sampling idea, and defined as the difference between the top
two local maximums in the heatmap. Intuitively, a smaller
difference means larger uncertainty or a multi-modal predic-
tion.
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1.2. Multiple Peak Entropy (MPE)

Multiple Peak Entropy is also introduced by Liu and Fer-
rari [1] for single-view pose estimation. The idea is that, as
modes on a heatmap can be spatially diffuse, simply com-
paring the highest and second highest would not be able to
differentiate between a single wide mode and multiple tight
modes. Instead, multiple peaks are considered together to
better characterize the uncertainty in a predicted heatmap.

To be concrete, MPE samples H? at all the local peaks L,
and computes the resulting entropy:

Muype(V —Pr(IF)logPr(1¥), ()

ZZ

k liker*


https://orcid.org/0000-0001-6342-3228
https://orcid.org/0000-0002-0828-0794
https://orcid.org/0000-0002-7788-6896
https://orcid.org/0000-0003-2643-7457

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

Figure 2: Sample images from each of the 10 pose clusters (Fig 6 in the main paper), obtained by K-means.
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(a) Top frames, enlarge P. (b) Top frames, constant-sized P. (c) Alternating schedule.

Figure 3: Comparisons between pseudo-labeling strategies: deviation between sampled pseudo-labels and corresponding
ground truth, measured in MKPE.

where strategy, along with the entropy values computed from the
Pr(lt) exp H*(IF) 3) discrete distributions. The ground truth 3D poses are shifted
v Zz kepk €XP H k(lf) ’ in 3D to have keypoint 2 (waist) at origin, and then we use
’ K-means to cluster them into 10 clusters. Sample images
Note that the softmax operator is applied on the sparse set from each cluster are visualized in Fig 2. The visualization
of local peaks only. Liu and Ferrari [1] found that MPE per- confirms the findings that the proposed OURS-MC samples
forms better over the random baseline for single-view human frames with better diversity in poses (higher entropy), espe-
pose estimation. cially in the early iterations.
1.3. Random 3. Ablation Studies on Self-Training and Aug-
Random sampling is a simple and very effective baseline mentation
strategy in active learning for all kinds of tasks [2, 4]. For
pose estimation, random selection of frames from I/ ensures 3.1. Ablation Studies on Self-Training
that the sampled poses closely follow the training distribution . )
during the AL process. In addition to the differences between the proposed

self-training algorithm and the multi-view bootstrapping
method [5] mentioned in the main paper, self-training pro-

2. Visualization of 3D P
Visualization of 3 ose duces new and more accurate pseudo-labels as the amount of

As stated in our main paper, we study the distribution human-annotated data increases with the AL iteration. Here,
of sampled frames with respect to a discrete clustering of we detail the design choices for our specific self-training
ground truth poses. In Fig. 6 of the main paper, we have strategy.

visualized the distribution of frames sampled by each AL We have considered the following three strategies. In
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Figure 4: Effects of data augmentation using RandAugment on CMU Panoptic. OURS-MC achieves better label efficiency than

RAND + AUG without data augmentation.
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Figure 5: AL + self-training (ST) on CMU Panoptic without data augmentation. X-axis: percent of dataset labeled. When
combined with AL, our automated self-training strategy enables additional label efficiency gains at no extra computational
cost, especially for RAND and during the early stages of training. Best viewed in color.

Fig. 3, we plot the distributions of MKPE between pseudo-
labels in P and their corresponding ground truth, over the
first four AL iterations.

1. Fig. 3a. Enlarge P in each AL iteration with the top
pseudo-labeled frames. (Selection criterion is discussed
in the main paper.)

2. Fig. 3b. Keep the size of P constant, and pick the top
pseudo-labeled frames in each AL iteration.

3. Fig. 3c. Alternating schedule (described in the paper):
in each AL iteration ¢, pick top frames that are not al-
ready in P;_; from the last iteration, to form P; for the
current iteration.

To begin with, the first strategy is easily susceptible to la-
bel drifting, as more and less accurate pseudo-labels would
enter P and pollute the training set over time. Somewhat sur-
prisingly, the second strategy of keeping the size of P con-
stant does not work either. We have empirically verified that,
in this scenario, the set of frames selected to form P is very
stable across iterations. Then, with every passing iteration,
this strategy essentially re-labels a same set of frames, us-
ing a new model trained on a training set containing them,
and the errors would accumulate. Note that in this case, the
model needs to achieve zero training error on P; in every AL
iteration ¢ for the pseudo-labels to remain the same, let alone
improve.

Lastly, we found the alternating schedule to be robust
against label drifting. In each iteration ¢, all frames in P;_;



are evicted, and prevented from re-entering until the next it-
eration. This effectively avoids the above error accumulation
problem, as a model trained on frames from P; (among oth-
ers) is never used to infer pseudo-labels on the same set of
frames.

3.2. Ablation Studies on Data Augmentation

We present the effect of RandAugment on CMU Panoptic
in Fig. 4 that is presented separately in Fig. 4 and Fig. 5 in
the main paper. For each training image, we randomly apply
two of the following augmentation operations:

e Rotate (within +30°)
¢ AutoContrast

* Equalize

¢ Invert

* Posterize

* Solarize

e Color

* Contrast

* Brightness

* Sharpness

In the case of image rotation, we also rotate the target
heatmap by the same amount. All other operations are label-
preserving and do not alter the heatmap.

Overall, we find that the choice of AL strategy outweighs
data augmentation. For example, OURS-MC without data
augmentation even outperforms RAND + RANDAUG with
PoseResNet-50 backbone. For OURS-MC with the HR-
Net backbone, the performance gain from data augmentation
gets smaller as it saturates more quickly towards the fully-
supervised baseline.

Additionally, we compare performances of self-training
on RAND and OURS-MC without RandAugment and present
the comparison in Fig. 5 to complement Fig. 5 in the main
paper. Self-training suffers from the fact that no augmenta-
tion is used in these experiments and only provides marginal
gains, with one exception to RAND with HRNet, where self-
training shows a slightly larger gain.
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