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We provide additional visual analysis of the sampling lo-
cations predicted by our model, analysis of offset location
statistics, analysis of temporal information propagation in
our recurrent cell, a visual inspection and discussion of re-
verse evaluation results, additional results on Vimeo-90K
and further details of our architecture.

1. Visual Analysis of Sampling Locations
We analyze the predicted sampling locations of our de-

formable attention pyramid (DAP) visually in Fig. 1. A ran-
domly selected subset of pixel-dense offsets are shown for
key/value sampling, overlaid on top of frame xt−1. These
locations are marked with crosses. Their corresponding
pixel-dense query location is shown in frame xt on the right
hand side in Fig. 1. The points are marked in the same color.
A visual inspection reveals offset predictions that match its
corresponding location with high precision. The network
learns to attend to offsets that are spread around the point of
interest for increased robustness.

2. Offset Analysis
In order to investigate the pixel-dense offsets predicted

by our DAP module, we plot the statistics from each video
sequence on REDS with 2 types of histograms in Fig. 2. The
top row provides 1D histograms to show the distribution of
offset magnitudes in each sequence. The offset magnitudes
are different, depending on the video content. The predicted
offsets in sequence 0 are significantly smaller compared to
others, which we attribute to more distant objects in the
scene after visual inspection. The closer objects appear in
a video, the larger their offsets grow. The second row in
Fig. 2 contains 2D histograms, showing the prominent off-
set directions and magnitudes. The plots hint at the type
of movement in each sequence, e.g. sequence 11 has larger
offsets than sequence 0, indicating larger camera movement
or more close-up content. Similar arguments can be made
about sequence 20. Sequence 15 shows a unique horizontal
offset pattern, which is a consequence of a camera pan with
horizontally moving objects. There is a concentrated direc-

tion of offsets in one direction, and another set of offsets in
the opposite direction. These differences are likely caused
by opposing movement of background and foreground ob-
jects in the scene when the camera pans.

3. Analysis of Temporal Information Propaga-
tion

We investigate the evolution of PSNR in each sequence
of REDS (test set) in Fig. 3. In order to show the impor-
tance of temporal aggregation from previous frames, we
plot PSNR curves with different starting points, i.e. we ini-
tialize an empty hidden state at regular intervals (every 10th
frame) and from there evaluate our model until the end of
the whole sequence.

We investigate the model DAP-128, which was trained
on 15 frames, i.e. the model we use for comparison to state
of the art in the paper. Our proposed recurrent temporal in-
formation aggregation mechanism (DAP) efficiently lever-
ages temporal information to improve super-resolution of
a single frame. The effect is significant, as shown by the
steep initialization curves exposed by subsequent intervals.
In some cases - depending on the content - it takes more
than 15 frames to reach the previously started model’s per-
formance with initial gaps of several dB in PSNR. Thus, the
experiments show the benefits of having access to past in-
formation over a long temporal range, efficiently realized by
our DAP aggregation mechanism through the hidden state
in our recurrent cell.

4. Reverse Evaluation - Visual Results
We show the qualitative differences between forward and

reverse evaluation in Fig. 4. The quantitative differences are
investigated in the paper, we list these results again for ref-
erence in Tab. 1. The performance gain is attributed to the
camera’s motion direction as explained in the paper. If an
object is first visible in higher resolution (larger), the net-
work can leverage this higher-resolution information about
the object in lower resolutions (smaller) The performance
gain is clearly visible in 3 out of 4 sequences from the



Figure 1: Illustration of offset predictions. A subset of key/value offset locations in frame xt−1 are shown on the left.
The corresponding pixel-dense query locations in frame xt are marked in the same colors on the right. For detailed visual
inspection, the offsets are illustrated in the high-resolution domain.

Figure 2: Analysis of offset locations for DAP-128. Histograms of offset magnitudes are plotted for each sequence in REDS
(test set). The bottom row shows corresponding 2D histograms to assess the prominent orientations. Offsets are computed
relative to the current frame xt and are reported in high-resolution domain (in pixels).

REDS test set, only the first row reveals better results for
forward propagation. The better performing methods in-
clude forward camera motion, while the camera in the se-
quence in the first row pans from left to right. In effect, the
sign is first visible in higher resolution (larger) in forward
evaluation, leading to better results with the same argument.
The lighter model DAP-64 (reverse) even surpasses the vi-
sual quality of DAP-128 in row 4. The tiger’s reconstruction
shows sharper lines and reveals more details.

Configuration
−−−−−−→
DAP-64

←−−−−−−
DAP-64

−−−−−−−→
DAP-128

←−−−−−−−
DAP-128

REDS [11] 29.97/0.8571 30.16/0.8635 30.49/0.8676 30.72/0.8751

Table 1: Forward/Reverse (→/←) evaluation on REDS4
test set. We evaluate the same model in both directions.

5. Additional Vimeo-90K Results

We already report full results on REDS and UDM10 –
the most relevant datasets due to their high resolution and
long sequences – in the main paper along with results for
Vimeo-90K with the blur/downsample kernel (BD), which
provide a comprehensive overall picture of the compared
methods’ performance.

For completeness we additionally computed results on
Vimeo-90K, obtained by application of Matlab’s Bicubic
downsampling kernel (BI), see Tab. 2. We selected the BD
setting in the paper as more methods report their results in
this setting on Vimeo-90K. The relative performance to the
other methods with BI is similar to the BD setting - as gen-
erally is the case for different kernels. Thus, the discussion
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Figure 3: Analysis of information propagation in our recur-
rent cell for DAP-128 on REDS (test set).

and conclusions in the paper are equally valid after inspec-
tion of the BI results. Note, as explained in the paper in
Sec. 4.2, Vimeo-90K has limitations due to short sequences
and its evaluation protocol, which is intended for window-
based methods.

6. Method Details
In this section we present additional details of our mod-

ules.

Offset Prediction Block Our offset prediction network
ClS is composed of several light convolution layers with
leaky ReLU activations. It features an expansive part fol-
lowed by a contracting part, all kernels are of size 7 × 7.
We denote the layers as {fin, fout}, fin represents number
of input features, fout stands for number of output features.
Network ClS is a sequence of layers in following configu-

ration: ({24, 32}, {32,64},{64,32}, {32,16}, {16,8}). The
input consists of 8 + 8 + 4 × 2 features, 2 input feature
maps f l

t , v
l
t (encoded features + attention aggregated fea-

tures) plus the upscaled sampling estimates U↑(s
l+1
t ) from

the previous level (k locations).

Deformable Attention Our proposed attention mecha-
nism consists of 3 processing steps; (1) sampling, (2) encod-
ing and (3) attention. (1) For each pixel we sample at k lo-
cations in f l

t−1 according to sl ∈ RH/2l×W/2l×2k, to obtain
k shifted feature vectors. Note, we use 4 groups to further
reduce computations. Each sampled feature vector is en-
coded into key/value-pairs in step (2), the pixel-dense cur-
rent frame features f l

t are encoded into query vectors. The
feature size for query/key is set to 8. Then, cross-attention
(3) is performed to aggregate values according to query/key
correlations. In a final step, the hidden state features are ag-
gregated. To accommodate the larger feature size in the hid-
den state, we encode its query/key vectors into features of
size 8, but retain the feature size for the values by encoding
them in their native dimension (32 per group in DAP-128).
This ensures propagation of information in the hidden state
without a bottle neck.

Main Processing Block The main processing block N
consists of a convolutional layer to aggregate hidden state
and input frame xt, followed by 5 repeated fully convolu-
tional IMDN blocks [5]. In order to produce the next hidden
state ht and the output yt we employ another convolutional
layer at the end. The input feature dimensions are set to
128+3 corresponding to the feature size in the hidden state
and number of color channels in xt respectively. Follow-
ing the repeated IMDN blocks, the final convolution layer
produces the high-resolution output yt, represented in low
resolution (48 features) and the next hidden state ht (128
features for DAP-128). The high-resolution output frame in
RGB is obtained with pixel-shuffle. We also adopt residual
learning (nearest neighbor interpolation).
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Figure 4: Visual examples on REDS (test set) for forward and reverse mode evaluation. Except for the top row, where the
camera motion exhibits opposite behavior, all sequences are better reconstructed in reverse mode. Reverse mode results are
highlighted with red borders.

Vimeo-90K [14]

U
ni

d.

O
nl

.

R
-T

. Run fps FLOPs MACs REDS4[11] UDM10[16] BD BI
Method [ms] [1/s] [G] [G] PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ✓ ✓ ✓ - - - - 26.14/0.7292 28.47/0.8253 31.30/0.8687 31.32/0.8684
TOFlow [15] ✓ ✗ ✗ - - - - 27.98/0.7990 36.26/0.9438 34.62/0.9212 33.08/0.9054
FRVSR [12] ✓ ✓ ✗ ∗137 ∗7.3 - - - 37.09/0.9522 35.64/0.9319 -
DUF [9] ✓ ✗ ✗ ∗974 ∗1.0 - - 28.63/0.8251 38.48/0.9605 36.87/0.9447 -
RBPN [4] ✓ ✓ ✗ ∗1507 ∗0.7 - - 30.09/0.8590 38.66/0.9596 37.20/0.9458 37.07/0.9435
PFNL [16] ✓ ✗ ✗ ∗295 ∗3.4 - - 29.63/0.8502 38.74/0.9627 - 36.14/0.9363
MuCAN [10] ✓ ✗ ✗ 2’208 0.5 15’853.2 7’922.8 30.88/0.8750 - - 37.32/0.9465
EDVR-M [13] ✓ ✗ ✗ 116 8.6 925.7 462.3 30.53/0.8699 39.40/0.9663 37.33/0.9484 37.09/0.9446
EDVR [13] ✓ ✗ ✗ 348 2.9 4’037.3 2’017.3 31.09/0.8800 39.89/0.9686 37.81/0.9523 37.61/0.9489
TGA [7] ✓ ✗ ✗ 427 2.3 - - - - 37.59/0.9516 -
RSDN [6] ✓ ✓ ✗ 63 15.9 713.2 356.3 - 39.35/0.9653 37.23/0.9471 -
RRN [8] ✓ ✓ ✓ 28 35.7 387.5 193.6 - 38.96/0.9644 - -
RLSP [3] ✓ ✗ ✓ 30 33.3 503.7 251.8 - 38.48/0.9606 36.49/0.9403 -
DAP-128 (ours) ✓ ✓ ✓ 38 26.3 330.0 164.8 30.59/0.8703 39.50/0.9664 37.29/0.9476 37.06/0.9439

BasicVSR [1] ✗ ✗ ✗ 82 12.2 754.3 376.7 31.42/0.8909 39.96/0.9694 37.53/0.9498 37.18/0.9450
IconVSR [1] ✗ ✗ ✗ 100 10.0 904.9 451.9 31.67/0.8948 40.03/0.9694 37.84/0.9524 37.47/0.9476
BasicVSR++ [2] ✗ ✗ ✗ 110 9.1 837.1 418.1 32.39/0.9069 40.72/0.9722 38.21/0.9550 37.79/0.9500

Table 2: Additional results with Matlab’s Bicubic downsampling kernel (BI) on Vimeo-90K. Red denotes best, blue denotes
second best.
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