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1. Implementation details
1.1. Training

Our codebase is based on StyleGan2[6] and more specif-
ically, we use a Pytorch implemantationt1for both the
synthesis and the discriminator network. We also use
Pytorch3D[10] to render our synthetic face dataset.

The loss function of our generator is:

L = Lgen+Lpht+Lper+LID+Lgen+Lmean+Lkps (1)

where Lgen is the loss of the generator, Lpht is the pho-
tometry loss, Lper perceptual loss, LID the identity loss,
Lgen the generator loss, Lmead the depth loss and Lkps the
landmark loss. We use non saturating logistic loss [5] with
R1 regularization [8] as generator loss, the perceptual simi-
larity loss [14] as perceptual loss and L2-norm as photome-
try loss. Also, we use a facial landmark detector [1] to com-
pare the predicted facial landmarks between the groundtruth
images and the generated ones [3], whereas we use a state-
of-the-art face recognition network [2] for comparing the
identities between the generated and the real images via
comparing their facial feature vectors.

1.2. Fitting

During the fitting step, for a given image Î containing a
face, we firstly crop the image so that the face is in the cen-
tre of the image. Even though, our fitting approach works
well without the aforementioned step, we empirically no-
ticed that our network performs better and diverges faster
when it gets as input the cropped input image. Secondly,
from the image Î, we extract important facial information
such as the identity vector ẑID, using a face recognition
network [2] and the 2D facial landmarks using a facial land-
mark detection network [1]. We initialize the identity input
vector zID equal with the ẑID, the expression input vector
zexp equal with the zero vector, the camera pose vector zcam
equal with the frontal view vector, whereas the illumination

1https://github.com/lucidrains/stylegan2-pytorch

vector zill is initialized as the average illumination vector.
Given the parameters z = {zID, zexp, zcamzill}, our net-
work S outputs a rendered image I, in which we apply a face
mask based on the depth produced by the depth channels,
and we get a masked image Imasked. We also initialize a
trainable similarity matrix M as a vector for overlaying the
reconstructed masked image Imasked with the input image
Î and the overlaid image Iover is compared with the original
input image Î via the aforementioned loss functions.

2. Additional Qualitative Results

Figure 1: A qualitative comparison between our method
(3DMM-RF ) and [13, 11, 4]. Our approach can render
high quality images whereas retrieve accurate identity, cam-
era pose and illumination through fitting.

3DMM-RF is capable of rendering high quality images
including a great variety of output subjects. In addition to
the experiments in the main manuscript, in Figure 1, we
compare our approach with the fitting results obtained from
other state-of-the-art methods [13, 11, 4]. 3DMM-RF recre-
ate authentic details, which are more accurate and sharper
when compared with [13, 11] and more photorealistic than
[4].

Moreover, in Figures 7 and 8, we showcase additional
fittings, which demonstrate that our network has the ability



to be applied to a wide range of demographics, including a
range of ethnicities and genders.

Finally, we attach a video to the supplementary materi-
als (764.mp4), which shows interpolations of latent iden-
tity, pose, expression and illumination values. It displays
our method’s ability to disentangle the identity vector zID,
the expression vector zexp, the scene illumination vector zill
and the camera pose vector zcam.

3. Volumetric Rendering Ablation

(a) The input image (b) Random Slice

(c) Only max opacity samples (d) Ours

Figure 2: A qualitative comparison between different ren-
dering approaches for reproducing the input image (Fig 2a).
Fig 2b includes the results when we take a random slice of
the output radiance field provided that all weights are 1 in
this slice only, Fig 2c shows the output when taking only the
samples with the biggest opacity across each ray, whereas
Fig 2d shows our method’s output.

We want to confirm that the rendered images are pro-
duced using several meaningful volumetric samples across
a ray, and not just one slice of the output radiance field. To
do so, we perform the following ablation studies.

Figure 2 contains the results of our first ablation study.
We plot several slices of the radiance field, after assign-
ing as 1 to their weight values, to make sure that no slice
contains the whole image (Fig. 2b contains an example of
these slices). Secondly, for each ray, we only consider the
RGB values contained in the sample having the maximum

(a) Mean weight contribution
across ray samples’ position

(b) Pixel (128,128) (c) Pixel (256,256)

Figure 3: Fig. 3a : The weight contribution across the rays
considering only the foreground pixels. Fig. 3b & Fig.3c :
For pixels (128,128), (256,256) the figure depicts the RGB
values for each sample across the ray after having been mul-
tiplied by their corresponding opacity weights

opacity value. The rendered image based on this method is
shown Fig. 2c, whereas Fig. 2d includes our method’s out-
put. Comparing those figures, it is clearly shown that the
final rendered image requires more than one sample per ray
to efficiently reconstruct the input image.

On the other hand, we perform another study for con-
firming that various samples of the ray are contributing to
the rendered image and the results are portrayed in Fig. 3.
Fig. 3a portrays the mean weight contribution of the sam-
ples according to their position across the ray. It is clear
depicted that their is no position across the rays that our
model learns to render the final RGB value only based on
that. On the other hand, Fig. 3b&3c contain the RGB values
across two random rays multiplied by the opacity weights.
As these figures show, the final rendered RGB value de-
pends on the contribution of several different parts of the
ray.

4. Depth estimation
Given a ray r, our synthesis network predicts an esti-

mated ray-facial surface intersection depth Dr. Based on
this depth prediction, we can extract a facial mesh by us-
ing the marching cubes algorithm [7]. Fig. 4 depicts the
results of this algorithm after our network was fitted to the
images in Fig. 4a. The reconstructed images are presented
in Fig. 4b. Fig.4c clearly shows that we can extract a facial



(a) Input image (b) Reconstructed
face

(c) Mesh reconstruc-
tion

Figure 4: This figure portrays the 3D face reconstruction
acquired after applying the marching cubes [7] to the pre-
dicted facial depth.

mesh after applying the marching cubes algorithms.

5. Comparison against NeRF-based Methods

We compare our method with NeRF-based methods, in
order to provide insight into the comparative quality of our
model’s rendering, as well as with our advantages with re-
gards to the training and rendering time. We acquire a ran-
dom unseen subject, similar to the ones used in our training
dataset, and generate 40 renderings of various poses, plus
a frontal and side one used for testing. We compare our
method against NeRF [9] and NeuS [12], using their offi-
cial implementations and default settings. For NeuS, we
also provide masks. Then, we fit our model on 1, instead
of 40 images and compare our results in Tab. 1 and Fig. 5.
As can be seen, our method outperforms both, in terms of
quality, training and testing speed.

6. Failure Cases

Fig. 6 shows some common failure cases occurred dur-
ing our experiments. Such cases include severe facial oc-
clusions (e.g. glasses and hair), strong shadows and illu-
mination, and extreme poses, which inhibit both the facial
landmark annotation and the loss functions we use.

(a) Real (b) Ours (c) NeRF[9] (d) NeuS[12]

Figure 5: Qualitative comparison with NeRF-based meth-
ods: From left to right: a) frontal test image of the training
dataset, b) our frontal rendering based on a single-image fit-
ting, c) frontal rendering of NeRF[9] trained on 40 images
and d) frontal rendering of NeuS[12] trained on 40 images.
Please note, NeRF and NeuS are trained in low-resolution
given the rebuttal’s short period, and will be replaced with
higher resolution training.

Method Images Fitting t (min) Render t (sec)
Ours 1 5.5 0.085

NeRF [9] 40 858 9.5
NeuS [12] 40 660 7

Table 1: Quantitative comparison between our method,
NeRF[9] and NeuS[12], based on the image required to fit
the network, fitting time (minutes) and rendering time (sec-
onds) for a single frame.
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Figure 6: Examples of common failure cases.
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Figure 7: Our network is capable of being fitted in a great variety of ”in-the-wild” images including diverse subjects and
produce high fidelity images.
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Figure 8: Another example of 3DMM-RF ’s ability to perform well and render high quality images.


