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Appendix

1. Network Architecture and Training Details

1.1. ELEGANT [8] + CIR

Network Structure
For our ELEGANT + Controllable Interpolation Regu-

larization (CIR), we use the same network architecture as
the original ELEGANT paper [8]. We use an autoencoder-
structure generator G with an encoder E and a decoder D.
The E and D structures are symmetrical with an architecture
consisting of five convolutional layers. As for the discrimina-
tor D, it adopts multi-scale discriminators D1 and D2. Both
D1 and D2 use a CNN architecture with four convolutional
layers followed by a fully-connected layer. The difference
between them is that D1 has a larger fully-connected layer
while the one of D2’s is small.
Training Details

We train the ELEGANT and ELEGANT + CIR mod-
els on CelebA [4]. The size of input images is 256 × 256.
Both generator and discriminator use Adam with β1=0.5 and
β2=0.999, batch size 16, learning rate 0.0002 at first and
multiply 0.97 every 3000 epochs.

Hyperparameters in the loss function: For reconstruc-
tion loss and Adversarial loss, we use λreconstruction = 5,
λadversarial = 1 unmodified. For Controllable Interpolation
Regularization loss, we set λCIR = 1 × 107 to make the
regularization loss has a similar scale as other loss terms and
balance the training.

Disentangle details: The encoder of generator G maps
an image into a latent code with shape (512 × 8 × 8), and
ELEGANT will dynamically allocate these spaces to store
information of the interesting attributes. For instance, sup-
pose the attributes we want to disentangle are eyeglasses and
mustache. Then the input will be [eyeglasses, mustache],
and the first half of latent space will store the information of
eyeglasses. In other words, we disentangle the latent space
along the first dimension and both eyeglasses and mustache
get (256× 8× 8) latent space.

1.2. I2I-Dis [2] + CIR

Network Structure
We use the same network architecture as the original I2I-

Dis paper [2]. For all the experiments in this section, we use
images from cat2dog dataset with size 216× 216. There are
four modules in I2I-Dis: shared content encoder Ec, domain-
specific attribute encoder Ea, generator G, discriminator D.
For the shared content encoder Ec, we use an architecture
consisting of three convolutional layers followed by four
residual blocks. For the domain-specific attribute encoder
Ea, we use a CNN architecture with four convolutional
layers followed by fully-connected layers. For the generator
G, we use an architecture consisting of four residual blocks
followed by three fractionally stridden convolutional layers.
For the discriminator D, we use an architecture consisting of
four convolutional layers followed by fully-connected layers.
Our disentangled latent code consists of two-part: shared
content attribute latent code zc with shape 256×54×54 and
domain-specific attribute latent code za with shape 8× 1.
Training Details

The training of I2I-Dis and I2I-Dis + CIR use Adam
optimizer with batch size of 1, learning rate of 0.0001, and
exponential decay rates β1 = 0.5, β2 = 0.999.

Hyper-parameters in loss function: For reconstruction
loss, we use λrec

1 = 10, λcc = 10. For adversarial loss, we
use λcontent

adv = 1, λdomain
adv = 1. For latent regression loss,

we use λlatent
1 = 10. For KL divergence loss, we use λKL =

0.01. For our controllable interpolation regularization loss,
we use λCIR = 10.

1.3. GZS-Net [1] + CIR

Network Structure
We use the same network architecture and the same

dataset (Fonts [1]) as the original GZS-Net paper [1]. The
input images are of size 128× 128. There are two modules
in GZS-Net: an encoder E and a decoder D. The Fonts
dataset have 5 attributes: content, size, font color, back-
ground color and font. Each attribute takes 20 dimensions in
the latent space and thereby sums up to a 100-dimensional



vector. The encoder E is composed of two convolutional
layers with stride 2, followed by three residual blocks. Then
it comes with a convolutional layer with stride 2, followed
by a flatten layer that reshapes the response map to a vector.
Finally, two fully-connected layers output 100-dimensional
vectors as the latent feature. The decoder D mirrors the
encoder, composed of two fully-connected layers, followed
by a cuboid-reshaping layer. The next is a deconvolutional
layer with stride 2, followed by three residual blocks. And
finally, two deconvolutional layers with stride 2 produce a
synthesized image.
Training Details

We train GZS-Net and GZS-Net + CIR on Fonts [1]
dataset. We use Adam optimizer with batch size of 8,
learning rate of 0.0001, and exponential decay rates β1 =
0.9, β2 = 0.999.

Hyper-parameters in loss function: For reconstruction
loss, we use λrec

1 = 1, λcombine = 1. For our controllable
interpolation regularization loss, we use λCIR = 0.0001 at
an early stage and λCIR = 0.01 after 100000 epochs to
balance the training.

2. More Qualitative Results

Fig. 1 shows a larger version of main paper Fig. 1 to show
more details.

2.1. ELEGANT [8] + CIR

Fig. 2 shows more results of the task 1 performance on
two images face attribute transfer, which is similar to the
main paper Fig. 3. We offer three rows for each attribute,
including a new attribute (Mouth-Open vs. Mouth-Close).

Fig. 3 shows more results of the task 2 performance on
face image generation by exemplars, which is similar to the
main paper Fig. 4 but with bangs as our disentangle attribute.
The results show that CIR can help to overcome the mode
collapse problem in ELEGANT.

2.2. I2I-Dis [2] + CIR

Fig. 4 shows more results of the image-to-image trans-
lation, which is similar to the main paper Fig. 5. (a) We
generate cat images given fixed identity (domain) attribute
latent code and change the ’content’ attribute latent code by
interpolation. (b) We generate dog images given fixed con-
tent attribute latent code and change the ’identity’ attribute
latent code by sampling.

2.3. GZS-Net [1] + CIR

Fig. 5 shows more results of the interpolation-based con-
trollable synthesis performance on font color, background
color, size, and font attributes.

3. Quantitative Experiments Details
3.1. Disentanglement Evaluation by Correlation

Coefficient.

We use Spearman’s Rank Correlation for latent space
correlation computation. It is computed as:

rs =
cov(rgX , rgY )

σrgXσrgY

(1)

Here rgX and rgY means the rank variables of X and Y . cov
is the covariance function. σ denotes the standard variation.

For ELEGANT + CIR that disentangles eyeglasses and
mustache, we collect 10,000 images from CelebA [4] and
obtain the same number of (512 × 8 × 8) latent matrices
from encoder. Then we average the vectors along the 2nd

and 3rd dimensions and produce squeezed matrices of size
512. This preprocessing step is following the interpolation
strategy, which helps to display the intra correlation more
clearly.

For GZS-Net + CIR, 10,000 images are fetched from
Fonts and corresponding latent vectors with size 100 are
computed. No preprocessing is applied.

All the latent matrices (or vectors) are normalized before
putting into Spearman’s Rank Correlation calculation. The
normalization is calculated as:

norm(vi) = (vi − vi) / σvi , ∀ i ∈ {1, 2, ..., |v|} (2)

vi is the value of each dimension i in v. vi is the average of
vi and σvi is the standard variance.

4. More Downstream Tasks and Applications
We conduct more experiments to demonstrate 3 potential

applications with the more convex and robust disentangled
latent space by CIR.
Data Augmentation. We design a letter image classification
experiment with Fonts [1] to evaluate how interpolation-
based controllable synthesis ability, empowered by CIR,
as a data augmentation method, improves the downstream
classification task. We tailored three datasets from Fonts,
each of them has ten letters as labels. The large training set
(DL) and testing set (Dtest) have the same number of images
with the same attribute values. We take a subset of DL to
form a small training set DS with fewer attribute values.
For data augmentation, we first train the GZS-Net and GZS-
Net + CIR on DS , and then we use the trained models to
generate 1000 new images by interpolation-based attribute
controllable synthesis. We combine the synthesized images
with DS and form two augmented training sets DS+G (GZS-
Net) and DS+G+C (GZS-Net + CIR), respectively. All test
accuracy shown in (Table 1), which shows an improved data
augmentation performance on downstream tasks with the
help of CIR. (more details in Supplementary)



Figure 1. Our proposed approach CIR improves the result quality of 3 tasks by encouraging both disentanglement and convexity in the latent
space: (a) Face attribute editing with ELEGANT (add/remove glasses on face); CIR is better able to transfer glasses with less disturbance on
other face parts. (b) Image to image translation transfer from a dog image to a cat image with same pose (content); CIR better matches the
desired pose with fewer artifacts. (c) Zero-shot synthesis with GZS-Net to synthesize an image with a new background by interpolating in
the corresponding latent space; CIR better interpolates the background only without changing letter size, color or font style.

Table 1. Controllable augmentation performance (the ⋆ means that
synthesized images with new attributes are added into training set)

Attribute
Dataset

DL DS DS+G DS+G+C Dtest

Size 3 2 2⋆ 2⋆ 3
Font Color 6 3 3⋆ 3⋆ 6
Back Color 3 3 3⋆ 3⋆ 3
Fonts 10 3 3⋆ 3⋆ 10
Dataset Size 5400 540 540+1000 540+1000 5400
Train Accuracy 98% 99% 99% 99% N/A
Test Accuracy 94% 71% 74% 76% N/A

Bias Elimination for Fairness. Dataset bias may influence
the model performance significantly. [5] listed lots of bias
resources and proved that eliminating bias is significant. A
more convex and disentangled representation with CIR could
be a solution to the bias problem by first disentangle the bias
attribute and then remove them in the final decision. We use
the Fonts dataset to simulate the bias problem. We tailored
three datasets, a biased training dataset DB, two unbiased
dataset: DUB for training and DT for test. In DB, we entan-
gle the two attributes, letter and background color, as dataset

bias. DB consists of three-part: G1, G2, and G3, where each
letter has 1, 3, and 6 background colors, respectively. (more
details in Supplementary) Then, we use DB and DUB to train
letter classifier with resnet-18 respectively and test on DT

as the control groups. As is shown in Table. 2, the classifier
trained on DB, only gets 81% test accuracy while classi-
fier trained on DUB obtains 99% test accuracy. As shown
in Fig. 8, Grad-Cam’s [6] results proved that the classifier
would regard background color as essential information if
it entangled with letters. We use the more convex and dis-
entangled representation of CIR to solve the entangled bias
in DB. We first train a GZS-Net + CIR use DB. Then we
train a letter classifier on the latent representation instead
of image space, where we explicitly drop the background
color-related dimensions (bias attribute) and use the rest of
the latent code as input. After training, the accuracy rises to
98%. Hence, we eliminate the dataset bias with the help of
robust disentangled latent by CIR.



Figure 2. More examples of ELEGANT+CIR (E+CIR) performance of task 1 for two images face attribute transfer



Figure 3. ELEGANT + CIR Performance of task 2 for face image generation by exemplars

Table 2. Bias elimination experiment results

Dataset
Model

resnet18 DB resnet18 DUB GZS-Net + CIR DB

Test(Letters in G1) 52.73% 99.17% 96.77%
Test(Letters in G2) 82.63% 98.67% 98.97%
Test(Letters in G3) 99.13% 98.30% 98.46%

Train 99.44% 98.82% 99.98%
Test 81.32% 98.63% 98.11%

Table 3. Bias elimination dataset setting
Dataset Number of

letters
Number of

colors

DB
G1 15 1
G2 15 3
G3 22 6

DUB 52 6
DT 52 6

Mining New Attribute Value. Fig.6 shows our results of
mining new attribute value. To find a good exploration di-
rection and mine new attribute values, we explore the distri-
bution of each attribute value in the corresponding attribute-
convex latent space (e.g., the distribution of different back-
ground colors in a convex background color latent space:
Aback = {blue, red, green, yellow, . . . }).

Two common kinds of distribution are considered:
1) Gaussian. For those attributes (object color) whose at-
tribute value (blue color) has slight intra-class variance (all
blues look similar), their distribution can be seen as a Gaus-

sian distribution. We can use K-means [3] to find the center
of each object color and guide the interpolation and synthe-
sis.
2) Non-Gaussian. We treat each attribute value as a binary
semantic label (e.g., wear glasses or not wear glasses ). We
assume a hyperplane in the latent space serving as the sepa-
ration boundary [7], and the distance from a sample to this
hyperplane is in direct proportion to its semantic score. We
can train an SVM to find this boundary and use the vector
orthogonal to the border and the positive side to represent a
Unit Direction Vector (UDV). We can then use the UDVs or
a combination to achieve precise attribute synthesis and find
new attribute values. As shown in Fig. 9 (a), we can find
the boundaries and UDVs by SVM for each attribute value.
To solve the precision problem in attribute synthesis, Fig. 9
(c) shows moving towards the z value of the cluster center
directly for Gaussian; Fig. 9 (d) shows moving from the
start point, across the boundary, to the target attribute value,
by adding the UDV of the target attribute for non-Gaussian.
Fig. 9 (b) shows that we can combine the UDVs to discover
new attribute values.

Here we explore the distribution of disentangled repre-
sentation and mining the relationship between movement
in high dimension x space and low dimension z space to
answer the question: Which direction of movement can help



Figure 4. I2I-Dis + CIR performance of diverse image-to-image translation

us to find new attributes?
For each background color, we train a binary color classi-

fier to label interpolated points in the z space and assign a
color score for each of them. Then we use SVM to find the
boundary and obtain UDV for this attribute value. Since the
UDV is the most effective direction to change the semantic
score of samples, if we move z value of the given image
towards UDV, its related semantic score would increase fast.
To explore more new attributes, the combination of UDVs
may be a good choice. For instance, if the given picture is
green, the new colors may fall in the path from green to blue
and the path from green to red. Thus, it is reasonable to set
our move direction as v = vblue+vred−vgreen (v represents
UDV). The 1st row of Fig. 7 shows the results of changing
z value with the combine vector vblue + vred − vgreen. On
the contrast, the 2nd row only use vblue and the 3rd row only
use vred. We can find that both the 2nd and the 3rd row only
find one color while the 1st row finds more.



Figure 5. More results of GZS-Net + CIR performance of interpolation-based attribute controllable synthesis

Figure 6. Controllable mining novel background and font color by interpolation in latent space.

Figure 7. Mining new attribute values with UDV



Figure 8. The influence of bias shown by Grad-Cam

Figure 9. Towards controllable exploration direction
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