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Overview
In this document, we provide additional results and tech-

nical details. Firstly, Section 1 provides a detailed descrip-
tion of the network architecture. Section 2 analyses the
presence of outliers in reID datasets and how they degrade
feature learning. Section 3 provides qualitative analysis of
the triplet mining strategy used by RPTM in semi-hard posi-
tive sampling. Section 4 demonstrates the role played by re-
ranking in improving evaluation results. Finally, we show
more visual comparisons of our model against current state-
of-the-art results in Section 5.

1. Architecture Details and Hyperparameters
A major focus of our research was to create a universal

model that performs well across benchmarks, for both ve-
hicle re-id and person re-id datasets. As mentioned in Sec-
tion 5.2 of the main paper,we observed that RPTM performs
well on the ResNet backbone with Squeeze-Excitation [2]
and an Instance Batch Normalisation (IBN) appendage. Ta-
ble 1 provides the details of the hyperparameters of the uni-
versal network that generated state-of-the-art results in ve-
hicle re-id and comparable results in person re-id.

2. Outlier Analysis
Figure 1 displays several cases of outliers in reID

datasets. Outliers prevent images from mapping the correct
semantic meaning of the IDs the images belong to, making
outliers extremely problematic for reID. One of the most
common outliers in reID datasets is images with occlusions
that tend to mask the object being studied, wholly or par-
tially. In person reID, bounding boxes sometimes capture
two persons and the focus is put on the wrong object. In
vehicle reID, especially for large datasets like VehicleID, a
major issue is the presence of the same model across IDs.
This outlier issue is further exacerbated when these mod-
els are of the same colour as well. All these cases make it
difficult to train CNNs to learn accurate features. Hence,

RPTM (ResNet101 Baseline)
Input Size(Veri-776) 240× 240
Input Size(VehicleID) 240× 240
Input Size(DukeMTMC) 300× 150
Train Batch Size 24
Test Batch Size 100
Workers 8
Optimizer SGD
Momentum 0.9
Weight Decay 5e−4

Learning Rate 0.005
Scheduler MultiStepLR
Decay Factor 0.1
Margin (triplet loss) 0.3
λtri 2
λxent 0.5
Stride 1
Droprate 0.2
Pooling Average
Pre-trained ImageNet
Feature Dimension 2048

Table 1: Hyperparameters of RPTM (ResNet101 Baseline)
used for implementing RPTM on reID benchmark datasets.

RPTM is proposed to exclude such outlier cases and learns
additional features during positive selection for triplet min-
ing. By cleaning up the reID process as described, RPTM
can train reID models robust to outliers.

3. Triplet Mining and Triplet Loss
The triplet mining method proposed in Section 4.2 of the

main paper is quite effective is selecting a suitable semi-
hard positive sample for an anchor image during train-
ing. The triplet mining strategy used estimates thresh-
old τ which reflects the bare minimum GMS matches
RPTMmin, the non-zero average value of GMS matches
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Figure 1: Outliers serve as a hindrance to proper training
of reID models. Standard models are unable to focus on
fine-grained details and resolve outlier cases during train-
ing. Some examples of outliers in the DukeMTMC(top two
rows) and VehicleID(bottom row) datasets. The first row
shows the effect of occlusions. The second row shows an
overlap between object tracklets of two persons. The last
row shows the distribution of the same vehicle model with
the same colour across several IDs.

RPTMmean or the maximum GMS matches RPTMmax,
from which we select RPTMmean as the threshold for pos-
itive sample selection. Figure 2 reflects the above strategy
across all three benchmark datasets used in this paper.

Table 2 describes the role of triplet loss. We have estab-
lished how important positive mining is to the triplet loss
cost function but it is prudent to evaluate the role triplet loss
plays in reID. To that end, we manipulate the co-efficient
of the triplet loss function λtri. Set at 2 for normal experi-
ments, we change the value of λtri to 0.5 and 1 and train the
RPTM model on Veri-776 and DukeMTMC. Since cross-
entropy loss is significantly larger than triplet loss, λxent is
set at 0.5 throughout our experiments.

4. Re-Ranking
Here, we test the variation of re-ranked mAP for the Veri-

776 and DukeMTMC dataset. Implementing the process
used by [4], Figure 3 involves manipulating and setting
the values of three coefficients, k1, k2 and η, which rep-

mAP r = 1 r = 5
Duke(λtri=1) 80.6 86.8 94.1
Duke(λtri=0.5) 77.2 83.8 92.6
Veri(λtri=1) 81.8 94.7 96.9
Veri(λtri=0.5) 79.9 93.4 95.8

Table 2: Evaluation results with the λ co-efficient for triplet-
cost set at 0.5. We observe a significant drop in mAP and
top-k rank across both datasets.

resent co-efficients(k1, k2) and penalty factors(η) used to
revise the ranking list calculated from standard evaluation
and re-calculate the pairwise distance for the new ranking
list. Figure 3a shows mAP results with the variation of k1
keeping k2 and η at 15 and 0.2 for Veri-776 and at 10 and
0.2 for DukeMTMC. Figure 3b shows the impact of k2 on
mAP, with k1 and η set at 60 and 0.2 for Veri-776 and 20
and 0.2 for DukeMTMC. Finally, the impact of η is studied
in figure 3c, with k1 and k2 fixed at 60 and 15 for Veri-776
and at 20 and 10 for DukeMTMC respectively.

5. More Experimental Results
In this section, we provide more visual comparisons with

state-of-the-art methods, based on the top-k gallery matches
for a given query sample, where we set the value of k to
20. Correct ID matches are denoted in green boxes whereas
wrong matches are enclosed in red boxes. We compare our
vehicle reID results on Veri-776 (Figure 4) with DMT [1]
and our person reID results on DukeMTMC(Figure 5) with
st-ReID [3]. The proposed algorithm generates strong pose-
aware results, especially in the top-10 matches.
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(a) Anchor-Positive Pair Selection by RPTM: Veri-776
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Figure 2: Visual representation of the Anchor-Positive
Pair Selection methodology for Veri-776, VehicleID and
DukeMTMC by the proposed RPTM algorithm, as ex-
plained in Section 4.2 of the main paper.
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(a) We fix k2 at 15(Veri)/10(Duke) and η at 0.2.
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(b) We fix k1 at 60(Veri)/20(Duke) and η at 0.2.
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(c) We fix k1 at 60(Veri)/20(Duke) and k2 at 15(Veri)/10(Duke).

Figure 3: Insight into the variation of mAP results with
the manipulation of re-ranking parameters k1, k2 and η for
Veri-776(red) and DukeMTMC(green). Optimal values of
parameters k1 and k2 vary with datasets, while the best
mAP results are seen when η is set to 0.2.
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Figure 4: Example results of two query images from the Veri-776 dataset. We compare the top-20 gallery retrieval results
between our proposed RPTM model and current state-of-the-art for Veri-776, DMT [1]. RPTM shows relatively better results
throughout the retrieval task, but more notably in the top-11 to top-20 retrievals.
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Figure 5: Top-20 retrieval results for two query images taken from DukeMTMC. We compare our RPTM model with the
current state-of-the-art, st-ReID [3]. Despite st-ReID showing higher values of mAP, rank-1 and rank-5 results, and RPTM
being fine-tuned for vehicle reID, RPTM shows equivalent retrieval results compared to st-ReID.


