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1. Effect of Model Size

We observed that the performance change from condi-
tional calibration appears to be negatively correlated with
the object detectors model size and performance. We verify
the observation on the EfficientDet [7], which is available
in 8 different size and performance versions. This ensures
that there are no other influences, such as loss functions,
augmentations or similar factors. The trend largely holds
for the different EfficientDet model variants, but there ares
some minor outliers (see Tab. [2).

2. Parameter Search Space

We chose a fixed search space of By = {2,3,4,5,6}
and Cy = {4,5,6,8,10,12,14}, which we kept con-
stant to have comparable results for all detectors and
methods. We now take a closer look at the influ-
ence the search space has on the performance. We de-
fine two additional sets B; = {8,10,12,14,20} and
Cy = {14, 16, 18,20, 24, 28, 34,40, 50} and explore differ-
ent combinations of the four sets for the parameter search
space. The results show that a larger search space increases
the performance changes (see Tab. [T). If, however, the
search space excludes low values for the number of con-
fidence bins like in C1, the performance for categories with
few detections is decreased.

3. Optimization Metrics

There are a range of metrics that could be explored for
the optimization of the bin size parameter space. The ex-
plored AP, Lgier, Liog, and LMS\E each have a good theoret-
ical justification for usage in this application. We explore
some of the possible metrics which we did not include in
the main section, and give justification for their exclusion.
Absolute Difference. The absolute difference, or absolute
deviations, could be considered a reasonable choice besides

Lggier and Lyog. It is calculated as
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but, in contrast to Lpser and Ly, it is not a proper scoring
rule [1]]. It is not minimized for ¢; = IP;, but rather by the
majority label, i.e. by ¢; = 1 for P; > 0.5 and ¢; = 0 for
P; < 0.5. Unsurprisingly, it performs even worse than the
proper scoring rules for the performance measured in mAP
(see Fig. [I) and mAPs (see Fig.[2)

Expected Calibration Error. Since our goal is to perform
a conditional confidence calibration a intuitive choice for
the optimization metric is the Expected Calibration Error
(ECE) [4]. If we let f1,c be the un-modified histogram bin-
ning with C' confidence bins, the ECE is calculated as:

N
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The ECE is also a proper scoring rule [[1], but it also has
its limitations in general [S]] and for this application: It only
tries to captures the calibration error not the conditional cal-
ibration bias. For the parameter optimization we follow [2]
and set the number of confidence bins to C' = 10. We cal-
culate the ECE separately for each class because we want
search for the class-wise optimal parameters. Because of
the described drawbacks the ECE does not perform well as
a optimization metric (see Fig.[I).

Estimated AP. Instead of the 11-point maximum interpo-
lated AP metric used by the COCO benchmark-evaluation
we could use the the AP computed over all the available
detections for each class:

N
AP =" Prec(i) - ARec(i). (3)
i=1

To distinguish it from the COCO-benchmark AP metric we
refer to it as APy . On average, APy performs almost as
good as AP when used as the optimization metric. It is,
however, also more susceptible to outliers and can thereby
sometimes severely degrade the performance on the hold-
out set (see Fig. [T)).



Search Space Calibration (train) Oracle
Box Bins Confidence Bins  mAP mAPs5g mAP mAPs
By Co 40.52(+0.23)  59.39(+030) 40.78(+0.49)  59.78(+0.69)
By o 40.43(+0.149)  59.48(+039) 40.88(+0.59) 59.88(+0.79)
By U B, Co 40.61(+032) 59.57(+048) 40.89(+0.60) 59.89(+0.80)
By U B, CoUCy 40.61(+032) 59.58(+049) 40.99(+0.700  59.99(+0.90)
Baseline 40.29 59.09 40.29 59.09

Table 1. Influence of parameter search spaces on performance changes. Performance of calibrated CenterNet detector with parameters
optimized with L= metric and oracle evaluation. Calibration on COCO train split, evaluation on validation data. Larger search space

MSE

enables larger performance gains, but excluding smaller sized confidence bins from the search space (C) can reduce mAP when optimizing

for the Ly metric.

Version #Param. Calib. mAP mAPs,

- 34.24 52.48
DO 3.9M train 34.30(+0.06) 52.62(+0.14)
oracle 34.50(+026) 53.00(+0.52)

- 40.09 58.85
D1 6.6M train 40.16(+0.07  58.95(+0.10)
oracle  40.33(+024) 59.30(+0.45)

- 43.38 62.52
D2 8.1M train 43.42(+0.04)  62.64(+0.12)
oracle 43.61(+023) 62.99(+0.47)

- 47.05 65.86
D3 12.0M train 47.08(+0.03)  65.90(+0.04)
oracle 47.23(+0.18) 66.18(+0.32)

- 49.15 68.24
D4 20.7M  train 49.16(+0.01)  68.27(+0.03)
oracle 49.33(+0.18)  68.58(+0.34)

- 51.03 70.09
D5 33.7M  train 51.08(+0.05)  70.16(+0.07)
oracle 5125022 70.45(+0.36)

- 51.99 70.94
D6 51.9M train 52.00(+0.01)  70.98(+0.04)
oracle 5217018 71.27(+033)

- 53.06 72.12
D7 519M train 53.05¢(-0.01)  72.14(+0.02)
oracle 53.21(+0.15) 72.42(+0.30)

Table 2. Influence of calibration method on different sized ver-
sions of EfficientDet [7]. Ordered by increasing model size: Cal-
ibration and parameter optimization on COCO train, evaluated on
validation data. The calibration is not very effective and its impact
decreases with increasing model size.
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Figure 1. Boxplot of Performance Change in mAP for Ex-
tended Optimization Metrics. CenterNet [8] calibrated on 60%
of COCO validation split, evaluated on the remaining 40% with
10 random splits. The box ranges from the lower to upper quantile
values, the green line is the median performance change.

4. Extended Look at Maximizing AP

Taking an extended look at the formal proof we start
again with the expected APy, :

Er [APth] =Er . “4)

N
ZPreC(i) - ARec(1)
i=1

Substituting precision and recall and our stochastic indica-
tor variable 1" we first get:

;i(zz_;(m % )

Er [APtlcU ] =Er
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Figure 2. Boxplot of Performance Change in mAP5, for Ex-
tended Optimization Metrics. Same settings as in Fig.

We can move T'; out of the inner sum:

N
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Er [APtloU} =Er (6)

We assume independence of T',, and T, for every m,n
with m # n. This is actually only the case if the detec-
tions d,, and d,,, don’t try to detect the same ground truth
object. The introduced error, however, is minuscule on a
large dataset the number of detections for the same ground
truth object are significantly smaller than the overall number
of detections. The number of detections for the same ob-
ject are further decreased through non-maximum suppres-
sion [6] (NMS).

The number of detections |G| is constant and can be moved
to the front. Since T'; ~ Bernoulli(P;) it follows that
(T:)? =T;.
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First we move the inner sum to the back,

]E A tIoU |g‘ Z <+IP k I(IPk)) (8)

and then reformulate it. First we can split the outer sum
into the sum over the first term and the double-sum over the
second term:

-IPi>. )

Ep [APtloU] =1~

Then we can switch the sums and their limits:

Er [AP oy (P IP’“ 10
wal = 75 Z EDY Z . (10)
| ‘ 1=1 k=i+1

Then we re-combine the term of the first sum into the outer
of the second sums:

Er[AP;, ] = |g2< Z ) (11)

k=i+1

h; (P;,P)

Here we see that h;(I,IP) > h;y1(I,P) fori € Nand [ €
(0, 1]. This can be seen more clearly if we split h; (I, P) into
the two components of its sum (I) and(II),

+P; Z (12)

k=i+1

P;
hi(Pi, P) = — +
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for the (I) it is obvious that for any [ € (0,1] and ¢ € N:

l l

> .
1 i+1

13)

For the second term (II) we can see that for any ¢ it can be
split as follows:

~op,
z+l
l § - [ H E (14)
k=i+1 W—’ k=i+2

(1)

where (IIT) is > 0 for I € (0,1] and ¢ € N and the sec-
ond term is (I) of h;1(l,P). Which proves that h;(l,TP)
is strictly larger than h;;1(l,P) in the relevant intervals
[ € (0,1] and ¢ € N. So the expected AP;, is a sum of
functions h, that given the same input value have strictly
decreasing output for larger values of <. It can thereby be
maximized for some fixed set of D, by sorting the detec-
tions by their IP. Since the detections are already sorted ac-
cording to their ¢ for the evaluation we need to ensure that
this also sorts IP i.e. that the confidence calibration curve is
monotonic:

P, <P, Vnm|c, < cnm. (15)

Under the assumption that this condition then holds across
different ¢,y’s it also maximises the mAP. The actual in-
fluence of ¢,y is discussed in the next section.

5. Intersection over Union (IoU) Threshold

The calibrations are all performed with ¢,y = 0.5; we an-
alyze the influence of this choice in Fig. [3] Unsurprisingly,
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Figure 3. Ablation of IoU thresholds, performance of condition-
ally calibrated CenterNet for different values of ¢,y that determine
the required bounding box overlap for TP detections.

the mAP5¢ metric is maximized for ¢,y of around 0.5, since
this is also the threshold used for identifying TP detection.
Slightly higher performance in mAP can be achieved with
tiou ~ 0.7 since this is roughly the median of the thresh-
old range for the evaluation of the mAP, as described in the
background section. Regardless of the ¢j,y the performance
change does not vary by much up to a ¢,y of 0.95. For
tiu =0.95 our assumption made in Sec. E| starts to break
down. An good confidence ordering with ¢1,y =0.95 is not a
good predictor for the best ordering for smaller ¢j,y. This is
likely due to a significantly reduced number of TP predic-
tions which leads to a higher variance in the estimate of P
and a consequently less accurate f .
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