
Supplementary: The Box Size Confidence Bias Harms Your Object Detector

Johannes Gilg Torben Teepe Fabian Herzog Gerhard Rigoll

Technical University of Munich

1. Effect of Model Size

We observed that the performance change from condi-
tional calibration appears to be negatively correlated with
the object detectors model size and performance. We verify
the observation on the EfficientDet [7], which is available
in 8 different size and performance versions. This ensures
that there are no other influences, such as loss functions,
augmentations or similar factors. The trend largely holds
for the different EfficientDet model variants, but there ares
some minor outliers (see Tab. 2).

2. Parameter Search Space

We chose a fixed search space of B0 = {2, 3, 4, 5, 6}
and C0 = {4, 5, 6, 8, 10, 12, 14}, which we kept con-
stant to have comparable results for all detectors and
methods. We now take a closer look at the influ-
ence the search space has on the performance. We de-
fine two additional sets B1 = {8, 10, 12, 14, 20} and
C1 = {14, 16, 18, 20, 24, 28, 34, 40, 50} and explore differ-
ent combinations of the four sets for the parameter search
space. The results show that a larger search space increases
the performance changes (see Tab. 1). If, however, the
search space excludes low values for the number of con-
fidence bins like in C1, the performance for categories with
few detections is decreased.

3. Optimization Metrics

There are a range of metrics that could be explored for
the optimization of the bin size parameter space. The ex-
plored AP, LBrier, Llog, and LM̂SE each have a good theoret-
ical justification for usage in this application. We explore
some of the possible metrics which we did not include in
the main section, and give justification for their exclusion.
Absolute Difference. The absolute difference, or absolute
deviations, could be considered a reasonable choice besides
LBrier and Llog. It is calculated as

Ldiff =
1

N

N∑
i=1

|ci − τ i|, (1)

but, in contrast to LBrier and Llog, it is not a proper scoring
rule [1]. It is not minimized for ci = Pi, but rather by the
majority label, i.e. by ci = 1 for Pi > 0.5 and ci = 0 for
Pi < 0.5. Unsurprisingly, it performs even worse than the
proper scoring rules for the performance measured in mAP
(see Fig. 1) and mAP50 (see Fig. 2)
Expected Calibration Error. Since our goal is to perform
a conditional confidence calibration a intuitive choice for
the optimization metric is the Expected Calibration Error
(ECE) [4]. If we let f̂1,C be the un-modified histogram bin-
ning with C confidence bins, the ECE is calculated as:

ECE =
1

N

N∑
i=1

|ci − f̂1,C(di)|. (2)

The ECE is also a proper scoring rule [1], but it also has
its limitations in general [5] and for this application: It only
tries to captures the calibration error not the conditional cal-
ibration bias. For the parameter optimization we follow [2]
and set the number of confidence bins to C = 10. We cal-
culate the ECE separately for each class because we want
search for the class-wise optimal parameters. Because of
the described drawbacks the ECE does not perform well as
a optimization metric (see Fig. 1).
Estimated AP. Instead of the 11-point maximum interpo-
lated AP metric used by the COCO benchmark-evaluation
we could use the the AP computed over all the available
detections for each class:

AP =

N∑
i=1

Prec(i) ·∆Rec(i). (3)

To distinguish it from the COCO-benchmark AP metric we
refer to it as APest.. On average, APest. performs almost as
good as AP when used as the optimization metric. It is,
however, also more susceptible to outliers and can thereby
sometimes severely degrade the performance on the hold-
out set (see Fig. 1).

1

Search Space Calibration (train) Oracle

Box Bins Confidence Bins mAP mAP50 mAP mAP50

B0 C0 40.52(+0.23) 59.39(+0.30) 40.78(+0.49) 59.78(+0.69)

B0 C1 40.43(+0.14) 59.48(+0.39) 40.88(+0.59) 59.88(+0.79)

B0 ∪B1 C0 40.61(+0.32) 59.57(+0.48) 40.89(+0.60) 59.89(+0.80)

B0 ∪B1 C0 ∪ C1 40.61(+0.32) 59.58(+0.49) 40.99(+0.70) 59.99(+0.90)

Baseline 40.29 59.09 40.29 59.09
Table 1. Influence of parameter search spaces on performance changes. Performance of calibrated CenterNet detector with parameters
optimized with LM̂SE metric and oracle evaluation. Calibration on COCO train split, evaluation on validation data. Larger search space
enables larger performance gains, but excluding smaller sized confidence bins from the search space (C0) can reduce mAP when optimizing
for the LM̂SE metric.

Version #Param. Calib. mAP mAP50

D0 3.9M
- 34.24 52.48
train 34.30(+0.06) 52.62(+0.14)

oracle 34.50(+0.26) 53.00(+0.52)

D1 6.6M
- 40.09 58.85
train 40.16(+0.07) 58.95(+0.10)

oracle 40.33(+0.24) 59.30(+0.45)

D2 8.1M
- 43.38 62.52
train 43.42(+0.04) 62.64(+0.12)

oracle 43.61(+0.23) 62.99(+0.47)

D3 12.0M
- 47.05 65.86
train 47.08(+0.03) 65.90(+0.04)

oracle 47.23(+0.18) 66.18(+0.32)

D4 20.7M
- 49.15 68.24
train 49.16(+0.01) 68.27(+0.03)

oracle 49.33(+0.18) 68.58(+0.34)

D5 33.7M
- 51.03 70.09
train 51.08(+0.05) 70.16(+0.07)

oracle 51.25(+0.22) 70.45(+0.36)

D6 51.9M
- 51.99 70.94
train 52.00(+0.01) 70.98(+0.04)

oracle 52.17(+0.18) 71.27(+0.33)

D7 51.9M
- 53.06 72.12
train 53.05(−0.01) 72.14(+0.02)

oracle 53.21(+0.15) 72.42(+0.30)

Table 2. Influence of calibration method on different sized ver-
sions of EfficientDet [7]. Ordered by increasing model size: Cal-
ibration and parameter optimization on COCO train, evaluated on
validation data. The calibration is not very effective and its impact
decreases with increasing model size.

AP
es
t.

EC
E
LBr

ier Ldi
ff

L lo
g

AP L M̂
SE

or
ac
le

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

∆
m
A
P

Performance change in mAP

Figure 1. Boxplot of Performance Change in mAP for Ex-
tended Optimization Metrics. CenterNet [8] calibrated on 60%
of COCO validation split, evaluated on the remaining 40% with
10 random splits. The box ranges from the lower to upper quantile
values, the green line is the median performance change.

4. Extended Look at Maximizing AP

Taking an extended look at the formal proof we start
again with the expected APtIoU :

ET [APtIoU] = ET

[
N∑
i=1

Prec(i) ·∆Rec(i)

]
. (4)

Substituting precision and recall and our stochastic indica-
tor variable T we first get:

ET [APtIoU] = ET

[
N∑
i=1

(∑i
k=1(T k)

i
· T i

|G|

)]
. (5)

AP
es
t.

EC
E
LBr

ier Ldi
ff

L lo
g

AP L M̂
SE

or
ac
le

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

∆
m
A
P
5
0

Performance change in mAP50

Figure 2. Boxplot of Performance Change in mAP50 for Ex-
tended Optimization Metrics. Same settings as in Fig. 1

We can move T i out of the inner sum:

ET [APtIoU] = ET

[
N∑
i=1

(∑i−1
k=1(T k) + T i

i
· T i

|G|

)]
. (6)

We assume independence of Tn and Tm for every m,n
with m ̸= n. This is actually only the case if the detec-
tions dn and dm don’t try to detect the same ground truth
object. The introduced error, however, is minuscule on a
large dataset the number of detections for the same ground
truth object are significantly smaller than the overall number
of detections. The number of detections for the same ob-
ject are further decreased through non-maximum suppres-
sion [6] (NMS).
The number of detections |G| is constant and can be moved
to the front. Since T i ∼ Bernoulli(Pi) it follows that
(T i)

2 = T i.

ET [APtIoU] =
1

|G|

N∑
i=1

(∑i−1
k=1(Pk) + 1

i
· Pi

)
. (7)

First we move the inner sum to the back,

ET [APtIoU] =
1

|G|

N∑
i=1

(
Pi

i
+ Pi

∑i−1
k=1(Pk)

i

)
(8)

and then reformulate it. First we can split the outer sum
into the sum over the first term and the double-sum over the
second term:

ET [APtIoU] =
1

|G|

N∑
i=1

(
Pi

i

)
+

N∑
i=1

i−1∑
k=1

(Pi · Pk)

i
. (9)

Then we can switch the sums and their limits:

ET [APtIoU] =
1

|G|

N∑
i=1

(
Pi

i

)
+

N∑
i=1

N∑
k=i+1

(Pi · Pk)

k
. (10)

Then we re-combine the term of the first sum into the outer
of the second sums:

ET [APtIoU] =
1

|G|

N∑
i=1

(
Pi

i
+ Pi

N∑
k=i+1

Pk

k

)
︸ ︷︷ ︸

hi(Pi,P)

. (11)

Here we see that hi(l,P) > hi+1(l,P) for i ∈ N and l ∈
(0, 1]. This can be seen more clearly if we split hi(l,P) into
the two components of its sum (I) and(II),

hi(Pi,P) =
Pi

i︸︷︷︸
(I)

+Pi

N∑
k=i+1

Pk

k︸ ︷︷ ︸
(II)

, (12)

for the (I) it is obvious that for any l ∈ (0, 1] and i ∈ N:

l

i
>

l

i+ 1
. (13)

For the second term (II) we can see that for any i it can be
split as follows:

l

N∑
k=i+1

Pk

k
= l

Pi+1

i+ 1︸ ︷︷ ︸
(III)

+l

N∑
k=i+2

Pk

k
, (14)

where (III) is > 0 for l ∈ (0, 1] and i ∈ N and the sec-
ond term is (II) of hi+1(l,P). Which proves that hi(l,P)
is strictly larger than hi+1(l,P) in the relevant intervals
l ∈ (0, 1] and i ∈ N. So the expected APtIoU is a sum of
functions h, that given the same input value have strictly
decreasing output for larger values of i. It can thereby be
maximized for some fixed set of D, by sorting the detec-
tions by their P. Since the detections are already sorted ac-
cording to their c for the evaluation we need to ensure that
this also sorts P i.e. that the confidence calibration curve is
monotonic:

Pn < Pm ∀ n,m | cn < cm. (15)

Under the assumption that this condition then holds across
different tIoU’s it also maximises the mAP. The actual in-
fluence of tIoU is discussed in the next section.

5. Intersection over Union (IoU) Threshold
The calibrations are all performed with tIoU = 0.5; we an-

alyze the influence of this choice in Fig. 3. Unsurprisingly,

0.5 0.6 0.7 0.8 0.9
39.8

40.0

40.2

40.4

40.6

40.8

41.0

tIoU

m
A
P
(-
)

57.8

58.2

58.6

59.0

59.4

59.8

60.2

m
A
P
5
0
(-
)

IoU-Thresholds

mAPoracle mAP50 oracle
mAPcalib. mAP50 calib.
mAPbaseline mAP50 baseline

Figure 3. Ablation of IoU thresholds, performance of condition-
ally calibrated CenterNet for different values of tIoU that determine
the required bounding box overlap for TP detections.

the mAP50 metric is maximized for tIoU of around 0.5, since
this is also the threshold used for identifying TP detection.
Slightly higher performance in mAP can be achieved with
tIoU ≈ 0.7 since this is roughly the median of the thresh-
old range for the evaluation of the mAP, as described in the
background section. Regardless of the tIoU the performance
change does not vary by much up to a tIoU of 0.95. For
tIoU =0.95 our assumption made in Sec. 4 starts to break
down. An good confidence ordering with tIoU =0.95 is not a
good predictor for the best ordering for smaller tIoU. This is
likely due to a significantly reduced number of TP predic-
tions which leads to a higher variance in the estimate of P
and a consequently less accurate f̂ .

References
[1] Tilmann Gneiting and Adrian E Raftery. Strictly proper scor-

ing rules, prediction, and estimation. Journal of the American
statistical Association, 102(477):359–378, 2007.

[2] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In ICML, pages
1321–1330, 2017.

[3] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Eu-
ropean conference on computer vision, pages 740–755, 2014.
(CC-BY 4.0): https://cocodataset.org.

[4] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In AAAI, 2015.

[5] Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang,
Ghassen Jerfel, and Dustin Tran. Measuring calibration in
deep learning. In CVPRW, volume 2, 2019.

[6] Azriel Rosenfeld and Mark Thurston. Edge and curve detec-
tion for visual scene analysis. IEEE Transactions on Comput-
ers, 100(5):562–569, 1971.

[7] Mingxing Tan, Ruoming Pang, and Quoc V Le. Ef-
ficientdet: Scalable and efficient object detection. In
CVPR, pages 10781–10790, 2020. (Apache-2.0):
https://github.com/google/automl/tree/
master/efficientdet.

[8] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. arXiv preprint arXiv:1904.07850, 2019.
(MIT License): https://github.com/xingyizhou/
CenterNet.

https://cocodataset.org
https://github.com/google/automl/tree/master/efficientdet
https://github.com/google/automl/tree/master/efficientdet
https://github.com/xingyizhou/CenterNet
https://github.com/xingyizhou/CenterNet

