
1. Supplementary Materials
1.1. Activation Ablation

Experiments for on the CIFAR10 and DIV2K datasets
were performed using a sine activation function with fre-
quency 30. Motivated by recent work on Gaussian acti-
vations we additionally explored the use of alternative ac-
tivations. The improved performance for sine activations
for the tested specifications led to its inclusion in our base
experiments. Our NeRF experiments were performed ex-
clusively with the ReLU + positional encoding as per the
original NeRF paper.
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Figure 1: Activation ablation for CIFAR (top), DIV2K with
32 unit neurons (middle), DIV2K with 64 unit neurons (bot-
tom). The sine activation shows improved performance over
both a ReLU activation and Gaussian activation for Distri-
butional, Minmax, and K-menas quantization. ReLU and
Gaussian activations do show some performance at low bit-
rates for Explicit [-1,1] quantization, however qualitative
evaluation shows little signal is obtained for these instances
(the PSNR instead reflecting a colour gradient but no finer
details until around 6 bits-per-weight).

1.2. SSIM Evaluation
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Figure 2: SSIM evaluation for the DIV2K experiments. Re-
sults are consistent with the PSNR evaluation presented in
Figure 7, with K-means quantization demonstrating higher
performance than uniform methods at low bits-per-weight.

1.3. Post-Training Quantization Comparison
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Figure 3: Comparison of quantization aware training (QAT)
and post-training quantization. K-means quantization used
in both experiments. CIFAR: 1 hidden layer, 20 hidden
units. DIV2K: 2 hidden layers, 64 hidden units. QAT out-
performs post-training quantization at low bits-per-weight.



1.4. Model and Dictionary Memory Usage

Figure 4: Trade-offs for compressed model (code) and dictionary sizes. For small network architectures
the storage of the quantization dictionary exceeds that of the compressed model. This issue diminishes as
the network size increases. Note for small models with a higher number of bits-per-weight, if the number
of weight elements in the layer is ≤ 2bits the dictionary will map a value exactly to each weight. Generated
data.



1.5. Blender Qualitative
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Figure 5: Qualitative NeRF results for Blender (4 hidden layers of 64 neurons, with 3-bit quantization).



1.6. LLFF Qualitative
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Figure 6: Qualitative NeRF results for LLFF (4 hidden layers of 64 neurons, with 3-bit quantization).



1.7. Log(MSE) Loss

In Section 3.3 we note that we experimented with
both the MSE loss function and its negative base-10
logarithm (i.e. an unscaled peak signal-to-noise ratio).
Experimentally we find that faster convergence occurred
when minimising for L = log10(MSE)1, and as such this
was used for all 2D image regression experiments. We
have not found discussion of this within the implicit neural
network literature and so include an intuition as to why this
may occur. Note that log is a monotonic transformation and
so does not change the optimising points for a function (i.e.
argmax log(f(x)) = argmaxf(x)). To understand why the
convergence may differ under this change we show that it
may be viewed as equivalent to scaling the gradients under
an optimiser (such as SGD) for the original loss.

i.e. there is a mapping h(·) such that:

∂ log(f(x))

∂x
= h(

∂f(x)

∂x
) (1)

Note that by the chain rule:

∂ log(f(x))

∂x
=

1

f(x)
· ∂f(x)

∂x
(2)

So:

h(
∂f(x)

∂x
) =

1

f(x)

∂f(x)

∂x
(3)

Therefore there should see similar convergence be-
haviour by scaling our gradients by 1

f(x) .

From this we can modify an optimiser with for the loss
function L = f(x) such that it will give equivalent conver-
gence to using a log(f(x)) loss. Note that the update rule
for SGD minimising f(x) is:

x := x− η∆f(x) (4)

Setting η2 = η 1
f(x) gives a step-scheduler for a loss

function which will be equivalent to optimising the log-loss.

x := x− η2∆f(x) (5)

1Note that minimising for log(MSE) is the same as maximising
− log(MSE) (i.e. directly optimising for PSNR).

Figure 7: Convergence difference between MSE loss and
log(MSE) loss [labelled as ‘PSNR’]. Uniform quantization
[-1,1] applied with 16 bits. DIV2K.

Figure 8: Step-sized scaled by 1/MSE when optimising for
a MSE loss. DIV2K.


