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Introduction

In this supplementary material to our main paper
Attribution-aware Weight Transfer: A Warm-Start Initial-
ization for Class-Incremental Semantic Segmentation, we
discuss the details of the gradient-based attribution method,
Integrated Gradients [11]] used in our Attribution-aware
Weight Transfer (AWT) initialization. We further share
more details of our implementation for better reproducibil-
ity, and perform additional ablative experiments to ana-
lyze the impact of the proposed warm-start initialization.
Finally, we present the qualitative results of AWT with
MiB [2] and SSUL [3]] on Pascal-VOC 2012.

1. Attribution Method

Integrated Gradients: Consider a deep neural network as
a function F' : R™ — [0,1]. Let x € R™ be the input
image and 2’ € R™ be a baseline black image. Integrated
Gradients (IG) [1 1] computes and accumulates the gradients
at all points along the straight line path (in R™) from the
baseline to the input.

Let Bg—if) be the gradient of F'(x) along the i*" dimen-
sion. Then the integrated gradient along the i*" dimension
for an input  and baseline x’ is defined as follows:

1
IG(z) == (2 — x}) X /70 erg.—w da (1)

Note that the attributions add up to the difference between
F(x) and F(z').

Layer Integrated Gradients: Layer Integrated Gradi-
ents [[10] is designed for computing attributions correspond-
ing to inputs or outputs of a specific layer of the network.
For a given layer, the size of the attribution maps is the same
as the layer’s input or output dimensions, based on whether
we attribute to the inputs or outputs of that layer. In our
method, we compute the attributions for the inputs to the fi-
nal classifier layer. We obtain the attributions corresponding
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to a given target class (background class in our method).

2. Reproducibility

Datasets: We evaluate our models on Pascal-VOC
2012 [|8], ADE20K [13]] and Cityscapes [5]. VOC contains
10,582 images for training and 1,449 images for testing.
ADE20K contains 20,210 and 2,000 images for training and
testing respectively. Cityscapes contains 2,975 training im-
ages and 500 testing images.

Implementation details: We use Deeplab-v3 [4] with
ResNet-101 [9]] backbone pretrained on ImageNet [6] hav-
ing output stride of 16. In-place activated batch normaliza-
tion [1] is used to reduce memory requirements. Similar
to [2,[7,|12]], the data augmentation from [4] has been ap-
plied along with random cropping of 512 x 512 pixels for
training and a center crop of the same size for testing. A
random horizontal flip is performed on the training set only.

We re-implement SSUL by training for 60 epochs on
ADE20K dataset. We follow the same training settings
for SSUL as proposed in [3]] for VOC and ADE20K. For
Cityscapes, we trained SSUL with a learning rate of 0.01
and a batch size of 24. We train the other models of FT,
PLOP, RCIL for Cityscapes with SGD and a learning rate
of 2 x 1072 for the first step only and 103 for the incre-
mental steps.

Class order: For all the quantitative experiments, we order
the classes by increasing class id, i.e. the default order of
the respective datasets.

For the ablation experiment using random orders on
VOC 15-1, we sampled the following 10 class sequences:
[1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
[12,9,20,7, 15,8, 14,16, 5,19, 4, 1, 13,2, 11, 17, 3, 6, 18, 10]
[13,19,15,17,9,8,5, 20,4, 3,10, 11, 18, 16, 7, 12, 14, 6, 1, 2]
[15,3,2,12, 14, 18, 20, 16, 11, 1, 19, 8, 10,7, 17, 6, 5, 13, 9, 4]
[7,13,5, 11,9, 2,15, 12, 14, 3, 20, 1, 16, 4, 18, 8, 6, 10, 19, 17]
[7,5,9,1,15,18, 14, 3, 20, 10, 4, 19, 11, 17, 16, 12, 8, 6, 2, 13]
[12,9,19,6,4, 10,5, 18, 14, 15, 16, 3, 8,7, 11, 13, 2, 20, 17, 1]



Table 7: Ablation study for significance of weight transfer
on Pascal-VOC 2012.

VOC (15-1)
New Classifier Init Iterations | 0-15 16-20 all
Random x 1 457 53 36.1
Random x 2 39.7 6.6 31.8
Random X 4 299 75 246
Weight transfer - MiB [2] x 1 48.1 15.8 404
Weight transfer - AWT (Ours) x 1 59.1 17.2 49.1

Table 8: Ablation study for selection of threshold using
MiB+AWT on Pascal-VOC 2012.

VOC (15-1)
Threshold for channel selection | 0-15 16-20 all
Top 10% 51.0 11.0 415
Top 25% 59.1 17.2 49.1
Top 50% 583 17.6 48.6
Top 75% 56.8 149 46.8

[13,10,15,8,7,19,4,3, 16, 12, 14, 11, 5, 20, 6, 2, 18,9, 17, 1]
[1,14,9,5,2, 15,8, 20, 6, 16, 18,7, 11, 10, 19, 3, 4, 17, 12, 13]
[16,13,1,11,12,18,6,14,5,3,7,9, 20, 19, 15, 4, 2, 10, 8, 17]

3. Additional Ablation Experiments

Additional experiments are performed to analyze the ef-
fect of the initialization and the number of training iterations
per step. We show in that training the model with
random initialization for a higher number of iterations (X2,
x4) cannot reach the performance of AWT initialization or
even the one proposed by [2[]. Instead, training for more
iterations causes higher forgetting of old classes.

Furthermore, we vary the threshold k to select the most
significant 10%, 25%, 50% and 75% of the channels for
weight transfer. Based on the results of this experiment
shown in our final AWT uses a ratio of 25% for
all our experiments in the main paper.

To discuss the role of AWT on reducing the effect of
background shift, we analyze the performance of the newly
added classes after every step of training for VOC 15-1
and ADE20K 100-10 settings in [Figure 7} We observe that
MiB+AWT better learns the new set of classes which transi-
tions from the previous background to current foreground.
This indicates reduced effect of the background shift with
AWT across multiple steps.

4. Additional Qualitative Evaluation

shows the comparison of predictions using
MiB, MiB+AWT, SSUL, and SSUL+AWT on some test

samples of Pascal-VOC 2012 using models trained in the

New class performance for VOC 15-1 setting
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(a) VOC 15-1 setting
New class performance for ADE20K 100-10 setting
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(b) ADE20K 100-10 setting

Figure 7: Analysis of the learning of new classes at every
step

10-1 setting. Over both the methods, AWT improves the
predictions for multiple classes like TV, car, aeroplane,
bird, chair, table, horse, person, dog, and many more.
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