
Supplementary Material:
Mobile Robot Manipulation using

Pure Object Detection

Per-Object TFOD Benchmark Results. We provide per-
object Task-Focused Few-Shot Object Detection (TFOD)
benchmark results in Figure 7, which correspond to the
ClickBot k = 1, 2, 4 few-shot example configurations in
Table 5. As in Table 5, we find opportunities for innova-
tion across all settings, especially one- or two-shot detec-
tion. The Wood, Chips Can, and Box of Sugar are partic-
ularly inaccurate for k < 4. Unsurprisingly, the k = 4
configuration has the best performance for all objects with
the exception of Gelatin.

We expect performance improvements across all objects
and few-shot configurations with future few-shot object de-
tection research. In practice, such methodological advances
will also improve robot task performance and reduce overall
annotation requirements.

Camera Movement and Learned Visual Servo Control.
We plot the camera movements for learning visual servo
control in Figure 8 with the corresponding learned parame-
ters originally shown in Figure 4.

For camera motion (�x), ClickBot repeats eight move-
ment commands comprising the permutations of {-5, 0, 5}
cm across the x and y axes (e.g., x = -5, y = 5 for the
second Broyden update). However, ClickBot’s base move-
ments are imprecise for small motions, so the actual mea-
sured movement distance we use for the update is slightly
less (e.g., Base Forward = -2.7 cm and Base Lateral =
2.5 cm of actual motion for the second update). Nonethe-
less, the actual motion profile is sufficient to learn Click-
Bot’s visual control, which we use for all experiments in
Section 5.

Depth Estimate Convergence. In Section 4.3, we intro-
duce ClickBot’s active depth estimation, which continu-
ally processes incoming data while approaching objects for
grasping. We provide an example depth convergence plot
in Figure 9, which corresponds to the Chips Can result in
Figure 1. ClickBot advances in 0.05 m increments, so the
depth estimate generally completes with the object between
0.15 m to 0.2 m away. In this example, after the grasp cam-
era moves 0.15 m, the Chips Can’s final estimated depth is
0.18 m, which leads to a successful grasp of the Chips Can.

As discussed in Section 4.3, ClickBot estimates object
depth from detection by comparing changes in bounding
box size (i.e., optical expansion) with the corresponding
camera movement, which we obtain using robot kinemat-
ics. We use the BoxLS equation [17, (9)] within our active
depth estimation approach to process all available observa-
tions in a least-squares formulation, thus, our depth estimate

generally improves as more data are collected. Finally, the
depth estimate’s accuracy significantly improves as the ob-
ject gets closer and exhibits more rapid optical expansion.

Individual Trial Results for Task-Focused Annotation.
We provide the task-focused few-shot annotation results for
individual trials in Table 6. All Mean results are the same
as those originally shown in Table 3. Remarkably, no ex-
periment configuration uses more than a minute of human
annotation time per object, which is approximately the same
amount of time required to annotate a single segmentation
mask and much less than the time required to generate a 3D
object model.

We discuss a few notable individual trial results. For
the Visual Servo and Depth Benchmark on the Food: Chips
Can, Potted Meat, Plastic Banana trial, ClickBot learns the
Find, Move, and Depth tasks for all objects without prior
annotation using 3 task-focused examples. For Pick-and-
Place in Clutter with Prior Annotation on the Food: Box
of Sugar, Tuna, Gelatin trial, ClickBot requires only 1 task-
focused Move example to transfer learning from the prior
pick-and-place task to learn pick-and-place in clutter. Fi-
nally, for Pick-and-Place in Clutter on the Food: Chips Can,
Potted Meat, Plastic Banana trial, ClickBot learns all tasks
for all objects in a cluttered setting without prior annotation
using 7 task-focused examples.

ClickBot-Generated Map for Dynamic Pick-and-Place.
We provide an example ClickBot-generated map in Fig-
ure 10, which corresponds to the dynamic pick-and-place
result originally shown in Figure 6.

ClickBot uses the same few-shot detection model with
it’s head-mounted RGBD camera, which enables Click-
Bot to map any RGB-based bounding box to a median 3D
point using the corresponding depth image. Using this map
for the Find task, ClickBot quickly identifies the closest
grasp object and subsequent placement location even after
a grasped object is blocking ClickBot’s grasp camera.

Cleaning Scattered Cups with Dynamic Pick-and-Place.
We show ClickBot cleaning scattered cups with changing
placement locations in Figure 11, which corresponds to the
final dynamic pick-and-place experiment in Section 5.5.

Supplementary Videos are provided at https://
youtu.be/Bby4Unw7HrI. Videos include a detection-
based manipulation overview, the learning visual servo con-
trol experiment from Section 5.2, and two example dy-
namic pick-and-place experiments from Section 5.5, which
includes ClickBot cleaning scattered objects with moving
placement locations at over 120 picks-per-hour.

Application Novelty. We provide an extended discussion
on application novelty to supplement the main paper. We
also provide an application comparison of related work in
Table 7. All citations are with the main paper’s References.

https://youtu.be/Bby4Unw7HrI
https://youtu.be/Bby4Unw7HrI
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Figure 7. Per-Object Task-Focused Few-Shot Object Detection (TFOD) Benchmark Results. All TFOD test results correspond to the
baseline ClickBot method in Table 5. There are many opportunities for future improvements, especially for k = 1, 2 few-shot examples.

�6

�4

�2

0

2

4
·10�2

�
x

(m
)

ClickBot Base Forward
ClickBot Base Lateral

0 2 4 6 8 10 12 14

�5

0

5

·10�4

Number of Updates

Pa
ra

m
et

er
Va

lu
e

@y
@sy
@x
@sx

Figure 8. Learned Visual Control cL+
s Parameter Convergence

with Camera Movement. ClickBot learns detection-based visual
servo control in 13.3 seconds after 13 camera movements (top)
and corresponding Broyden updates (4) (bottom). Subsequently,
ClickBot uses this learned visual control in all other experiments.

A fundamental asset of robot perception is the opportu-
nity to learn beyond static datasets from a robot’s own sur-
roundings. Consequently, the robotics community has de-
veloped innovative solutions wherein robots actively learn
in a fixed workspace. To estimate an object’s pose [62],
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Figure 9. Depth Estimate Convergence. We plot the depth esti-
mate corresponding to the Chips Can result in Figure 1. ClickBot
actively estimates an object’s depth as it approaches for grasping,
and this depth estimate convergences as the camera moves closer
and collects more data. Notably, the object’s depth relative to the
camera decreases with camera movement.

robots interact with 3D-modeled objects [6] to create new
training data [11, 39]. To grasp objects [12], robots perform
large-scale data collection individually [48] or with other
robots [32]. To place objects, robots learn residual physics
to toss objects into out-of-reach boxes [66]. However, all of
these robots learn in a fixed workspace, and scaling these
solutions to mobile operation remains an open problem. On



Table 6. Task-Focused Few-Shot Annotation Results (Individual Trials). All results are from a single consecutive set of trials. Clicks
are the number of annotated bounding boxes, which each require 7 seconds (see user study [26]). Note that Clicks per Few-Shot Example
varies with the number of in-view objects. CPU refers to training time. Mean results are the same as those originally shown in Table 3.

Number of Task-Focused Requirements Per Object Class
Few-Shot Examples Generated (E) Annotation Robot CPU

Task-Focused Learning Experiment Trial Find Move Depth Grasp Total Clicks Time (seconds)
Learning Visual Control (Section 5.2) 1 0 N/A N/A 1 1.0 7.0 13.3 227

Visual Servo and Depth Benchmark (Section 5.3)
Tool: Power Drill, Marker, Padlock 1 1 3 N/A 5 3.7 25.7 22.9 381
Tool: Wood, Spring Clamp, Screwdriver 1 1 2 N/A 4 3.7 25.7 10.9 309
Food: Chips Can, Potted Meat, Plastic Banana 1 0 2 N/A 3 2.7 18.7 9.3 233
Food: Box of Sugar, Tuna, Gelatin 1 1 4 N/A 6 3.7 25.7 30.0 460
Kitchen: Mug, Softscrub, Skillet with Lid 1 1 5 N/A 7 5.0 35.0 30.0 536
Kitchen: Plate, Spatula, Knife 1 0 3 N/A 4 2.7 18.7 18.0 304
Shape: Baseball, Plastic Chain, Washer 1 2 3 N/A 6 4.7 32.7 18.6 457
Shape: Stacking Cup, Dice, Foam Brick 1 1 3 N/A 5 3.7 25.7 21.5 387
Mean 1.0 0.9 3.1 N/A 5.0 3.7 26.0 20.2 383

Pick-and-Place with Prior Annotation (Section 5.4)
Tool: Power Drill, Marker, Padlock 0 0 0 4 4 3.0 21.0 27.3 307
Tool: Wood, Spring Clamp, Screwdriver 0 0 1 2 3 2.7 18.7 21.9 231
Food: Chips Can, Potted Meat, Plastic Banana 1 0 1 3 5 3.7 25.7 32.3 378
Food: Box of Sugar, Tuna, Gelatin 0 1 3 2 6 4.3 30.3 35.0 457
Mean 0.3 0.3 1.3 2.8 4.5 3.4 23.9 29.1 343

Pick-and-Place in Clutter with Prior Annotation (Section 5.4)
Tool: Power Drill, Marker, Padlock 1 0 0 3 4 2.7 18.7 32.6 374
Tool: Wood, Spring Clamp, Screwdriver 0 2 0 3 5 3.7 25.7 34.6 387
Food: Chips Can, Potted Meat, Plastic Banana 1 0 0 3 4 3.3 23.3 25.7 309
Food: Box of Sugar, Tuna, Gelatin 0 1 0 0 1 1.0 7.0 0.2 76
Mean 0.5 0.8 0.0 2.3 3.5 2.7 18.7 23.2 287

Pick-and-Place (Section 5.4)
Tool: Power Drill, Marker, Padlock 1 1 2 5 9 6.7 46.7 61.0 689
Tool: Wood, Spring Clamp, Screwdriver 1 1 2 3 7 6.0 42.0 38.3 543
Food: Chips Can, Potted Meat, Plastic Banana 1 0 2 3 6 5.3 37.3 33.4 457
Food: Box of Sugar, Tuna, Gelatin 1 1 4 4 10 6.0 42.0 73.0 770
Mean 1.0 0.8 2.5 3.8 8.0 6.0 42.0 51.4 615

Pick-and-Place in Clutter (Section 5.4)
Tool: Power Drill, Marker, Padlock 1 2 5 5 13 10.0 70.0 97.0 1,008
Tool: Wood, Spring Clamp, Screwdriver 1 0 4 3 8 5.7 39.7 60.2 614
Food: Chips Can, Potted Meat, Plastic Banana 1 2 2 2 7 6.0 42.0 33.0 540
Food: Box of Sugar, Tuna, Gelatin 1 4 6 3 14 8.3 58.3 79.2 1,082
Mean 1.0 2.0 4.3 3.3 10.5 7.5 52.5 67.3 811

the other hand, this paper uniquely addresses the problem of
robot learning in a mobile application setting. Mobile appli-
cation challenges include moving cameras, changing envi-
ronments, and dynamic grasp positioning for a mobile robot
and dexterous workspace that move in the world frame.

For robot perception without learning, robot mobility has
been achieved using closed-form visual servo control (VS),
i.e., using visual data as input to a servo feedback control
loop [8, 9, 24]. VS achievements include positioning UAVs
[18, 41] or wheeled robots [38, 40] and mobile manipulation
[30, 57]. However, all of these mobile VS robots use struc-
tured visual features (e.g., fiducial markers or LED panels).
On the other hand, this paper introduces a new detection-
based approach to robot learning to learn VS, depth esti-
mation, and grasping on a mobile robot in unstructured set-
tings, thus extending VS to new applications where the en-
vironment and objects can change.

Achieving the mobile manipulation results in this pa-
per required innovation across each of the detection-based
tasks. For detection-based visual servo control (Sec-
tion 4.2), we 1) develop a set of detection-based features
that account for detection errors and multiple objects and 2)
define a novel update formulation that learns visual servo
control on average in less than 14 s and reduces learn-
ing variability by 65-85% relative to prior visual servo ap-
proaches (Table 1). For detection-based depth estimation
(Section 4.3), we adopt our previous least squares formu-
lation [17, (9)] into a new active detection framework that
improves depth estimation during the grasp approach while
mitigating proximity-based detection errors. To our knowl-
edge, this paper is the first work to use detection-based
depth estimation in a real-time application. For detection-
based grasping (Section 4.4), we use a novel active multi-
view grasp selection approach that requires only bounding



Figure 10. ClickBot-Generated Map for Pick-and-Place with Dynamic Locations. In dynamic pick-and-place (bottom), ClickBot uses
detection with an RGBD camera to locate and grasp scattered objects (left) and similarly uses detection to find a suitable placement location
(right). Here, we show the ClickBot-generated map (top) corresponding to the pick-and-place result originally shown in Figure 6.

Table 7. Application Comparison of Related Work. To our
knowledge, this is the first work to use a real robot to learn few-
shot mobile manipulation for novel objects.

Vision Robot
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Few-Shot Object Detection e.g. [10] Yes Yes N/A N/A N/A
Train Detector with Robot Data e.g. [3] No Yes Yes No Yes
Classic Visual Servo Control e.g. [57] No No N/A Yes Yes
Learned Visual Manipulation e.g. [27] No Yes Yes Yes No
Mobile Visual Manipulation e.g. [16] No Yes No Yes Yes
ClickBot (Ours) Yes Yes Yes Yes Yes

boxes. To our knowledge, this paper is the first work to
grasp objects entirely from detection. Finally, we introduce
TFOD (Section 3) to learn all of these tasks for new ob-
jects and settings on a real robot in a variety of experiments
(Section 5), thereby validating our detection-based method.

Challenges, Solutions, and Future Work. We discuss a
few implementation challenges we found in experiments
and suggest some corresponding solutions and future work.

Moving HSR’s grasp camera (Section 5.1) in close prox-
imity to objects can cause the objects to blur, making de-

tection more difficult. However, if blur causes an error,
ClickBot uses the blurred image for few-shot annotation to
update its detection model, which we found improves de-
tection performance on blurred images. Another solution to
decrease blur is to scale the control input v (3) to slow down
the grasp camera when visual servoing to an object.

Our current approach to detection-based grasping (Sec-
tion 4.4) uses an overhead antipodal grasp at the center of an
object. However, HSR’s gripper (Section 5.1) is too small to
grasp some of the YCB Dataset objects using this approach
(e.g., the Skillet with Lid and Plate shown in Figure 5). One
solution is to train the detector to generate bounding boxes
on only the graspable portion of each object (e.g., the Skillet
with Lid’s handle). Regardless, some objects are simply not
graspable from overhead (e.g., the Plate). In future work,
we will expand our approach to include alternative grasp
strategies (e.g., lateral grasping at an object’s side) when
the detected object is too large for overhead grasping.

Our baseline detection model is based on a Faster R-
CNN [51] configuration available on the popular and open
source Detecton2 platform [61]. As discussed in Sec-
tion 5.1, one motivation for using this baseline was ease
of reproducibility for our experimental results. On the
other hand, few-shot object detection (FSOD) is becom-
ing a hotly studied area of object detection with increas-
ingly rampant advances, even within just the past year



Figure 11. Cleaning Scattered Cups with Dynamic Pick-and-Place. After we scatter cups on the ground, ClickBot uses its head camera
to locate the cups and then its grasp camera to grasp the closest cup (first row, left to right). Next, ClickBot uses its head camera to locate the
bins and then places the grasped red cup in the red bin to match color. As ClickBot grasps the second cup, we also rearrange the bins (second
row). ClickBot places each cup in the correctly colored bin, regardless of our rearranging the bins after each placement (third row). ClickBot
cleans up all nine cups in 260 seconds, which equates to a rate of 124.6 mobile picks per hour (bottom row). To our knowledge, there is no
precedent for this rate of vision-based mobile robot manipulation in the literature (see video at https://youtu.be/giiSYDwZM4c).

[14, 20, 23, 35, 33, 34, 49, 54, 60, 68, 67, 69]. We openly
admit that our results will likely improve with FSOD algo-
rithms that are more advanced than our initial baseline ap-
proach. While running more experiments with current and
future FSOD algorithms to reduce annotation requirements
and improve task performance is an area of future work,
this paper currently provides a new TFOD Benchmark that
makes robot-collected data and corresponding annotations
publicly available for research.1 Thus, with this paper, we
are encouraging the object detection research community to
join us in this effort to perform and evaluate methods in this
new task-focused setting for robot manipulation, which will
guide future innovation toward increasingly reliable few-
shot detection for robotics applications.

1Dataset website: https://github.com/griffbr/TFOD
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