DSAG: A Scalable Deep Framework for Action-Conditioned Multi-Actor Full
Body Motion Synthesis
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1. Expose dataset refinement

Estimating detailed finger motion is extremely challeng-
ing from monocular RGB images, especially so when the
“pixel real estate” per hand is small. Since ExPose[4] is a
frame-wise method, it is not smooth over time. To create a
dataset of sufficient quality for training generative models,
we apply several post extraction refinements.

e Facial joints are omitted since actions are performed in

neutral setting and provide no additional information.

e Due to self occlusion, finger motion of classes with dy-

namic hand movement like “make victory sign, thumb
down” cannot be captured from all views. Hence
actions performed by subject facing the camera are
considered. Specifically, CIR1 and C3R2 in NTU
dataset[14] and view 2 for HumanAct12[7]

e For temporal consistency we apply optimization

based refinement. For every action sequence, given
its ExPose extracted local body component X; =

{[Xl(l),Xl@), . ..Xl(p)]t} and local hand component
Xy = {[X,(Ll), X}(LQ), e X}(Lp)]t} and where [Xl(;;l]t €
R7*6 i.e. a 6-D rotation representation of .J joints, for
1 - th person, at timestep ¢ (1 < ¢ < 7). We optimise
the temporal smoothing loss:
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Here Agiopar = 1 and Apgpng = 0.1. To optimize we ap-
ply gradient descent for 100 iterations at learning rate
of 10.

After decoupling the motion using inverse kinematics,
for all the classes in NTU and HumanAct12 dataset we
noticed that the finger joints exhibit rotation with only
a single degree of freedom. Therefore their motion is
constrained to a single axis. For each finger joint, first
the rotation is converted from 6D to angle axis rep-
resentation. Next we convert the axis of all rotations
to polar co-ordinate and calculate the median of these
axis of rotations. We fix this median as the axis of ro-
tation for the entire dataset and calculate the angle of
rotation for each sample at each timestep. To calculate
this angle, we initialize it with the original angle and
optimize the L2 loss between with the original 6D rep-
resentation and predicted 6D representation. Similar to
previous step we use gradient descent for optimization.
The global trajectory information is sourced from the
original Kinect sequence of NTU dataset [8] with hip
as the body root joint and wrists as the hand root joints.
For two person sequences, the correspondence be-
tween individuals in the Kinect 3D sequence and the
counterparts in RGB-based ExPose is established on a
per-timestep basis by matching their respective ‘facing
direction’, defined as the vector normal to the plane
comprising of root (hip) joint and the two shoulder
joints.

e Since multi-person contacts cannot be captured from



Expose, classes with two person hand interactions such
as hugging, support somebody, touch pocket are omit-
ted.
e We refer to this newly derived datasets as NTU-Xpose
and HumanAct12-Xpose.
Video example to show the importance of
preprocessing the dataset can be found in
Videos/Importance-of-preprocessing—expose

2. Additional Details
2.1. Dedicated Body and Hand Components

Video example to demonstrate the importance of fin-
ger joints in the perception of an action can be found
in Videos/Importance-finger-Joint-Motion.
Finger joints have a lower degree of freedom. There-
fore, despite having a smaller number of joints, body joints
can dominate the finger joints within the action dynamics,
which would result in finger joints being under represented.
To mitigate this problem, we decouple finger and body com-
ponents. Video example to appreciate this can be found in
Videos/Effect-of-decoupled-body—-hand-
components.

2.2. ST-Block

Fig. 1 shows the detailed diagram for our ST-
Block. @ To demonstrate the importance of key ar-
chitectural components, we further show videos at
Videos/Effect-of-ST-block. The videos
effect-st-block—-<dataset>-<label>.mp4,
show how Multi Head Temporal Self-Attention helps cap-
turing precise action representation for datasets captured
at a very low frame rate. Specifically, for HumanActs12
dataset which is captured at a very low frame rate. Before
addition of the Multi Head Temporal self-Attention,
the model fails to generate action sequences with fine
movement, as the CNN based spatial encoder alone is not
sufficient to capture fine movements. But after addition
of the multi head temporal self-attention layer, it learns to
produce better results.

ST-Block-captures—-within-class—
diversity-better.mp4 shows how the temporal en-
coder module helps tackling large within-class diversity. An
example from Human3.6m dataset is shown in the video
since it has very high within-class diversity. Before addi-
tion of the temporal encoding module in the ST-Block, the
model would generate static skeleton sequence. But after
addition of the temporal module, it learns to represent the
within-class diversity.

2.3. Importance of each loss function

All the losses we employ are crucial for natural looking
generation. ‘Ablations’ in Sec. 5 of the main paper summa-

rizes trends by removing each loss function.

e Sequence length loss: Removing this loss causes the
maximum drop in scores and overall quality. The se-
quence length loss encourages realistic action dura-
tions for generated sequences. Without this loss, af-
ter some frames, random joint values are generated for
relatively shorter duration actions, causing undesirable
visual artifacts.

e 3D loss: In general, 3D loss ensures that parent-child
relationship of kinematic skeleton tree is maintained
correctly. Qualitatively, removing 3D loss causes sym-
metric bones such as left and right thigh (connecting
hip and knee joints) to interchange. This dramatically
affects visual appearance of the action.

e 6D loss: This is the main reconstruction loss for our
model. Using only 3D loss leads to generation of mean
pose. Other works (e.g. ACTOR[17]) report similar
artifacts in absence of this loss.

¢ Global trajectory loss: This loss encourages proper
relative distance between multiple actors and global lo-
comotion of actors.

2.4. Mesh Rendering

The animated mesh was generated using blender and
Three.js. Using the official SMPL blender addon, we first
generated the skinned neutral mesh and exported it as an
fbx file from blender. Next, in order to rig the animation to
the mesh, we imported the mesh file as well as the rotation
data in a Three.js scene. We then extracted each of the 52
joints required and rotated them across the specified action
time sequence thereby generating the animation.

Mesh rendered sequences across various datasets can be
found at
Videos/Comparisons-with-baselines-and-
ground-truth/<dataset>. Note that since
Human3.6[11] skeleton is different from SMPL-X
skeleton (See Fig. 3), some version of motion retargeting
would be required to deform SMPL-X mesh. To avoid
additional artifacts from motion retargeting, we show
skeleton sequences for generations on Human3.6 dataset.

2.5. Sequence Length Analysis

To compare sequence length distribution, 100 samples
are selected from ground truth and generated from DSAG
for each action class of NTU-Xpose-Single-person. Fig-
ure 2 shows that for different action classes, on average,
DSAG generates similar sequence length to the ground truth
data.

2.6. Hyperparameters

Table 1 shows our choice of hyperparameters for training
on different datasets. Please note that the hyperparameter
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Figure 1: Detailed diagram for the ST-block (see Sec. ??). Residual convolution (bottom left, shaded green) is applied to
process the spatio-temporal information. Multi-head self-attention (bottom right, orange) is used to incorporate the global

temporal dependency.

Dataset | AKT Nen  Aglobat  MNgd N3ty Nhand - \body
NTU-VIBE[ 14] Cyclic Annealing 1 2 - 10 1 1
NTU-Xpose[14] 0.1 5 1 1 10 1 1
HumanAct12[24] 0.01 1 - - 50 1 1

HumanAct12-Xpose[24] 0.001 1 - 1 10 1 1
UESTCI[12] 0.005 - - - 50 1 1
Human3.6m[11] 0.005 - 0.5 - 50 1 1

Table 1: Details of hyperparameters for training DSAG on different datasets. For NTU-VIBE A1, is obtained from a cyclic

annealing schedule [6]

for KL-Divergence loss Ak, is obtained from a cyclic an-
nealing schedule [6]. For Human3.6m dataset, we divide
each sequence into segments of 256 timesteps. For sin-
gle person (NTU-Xpose-Single-person) and multiple per-
son (NTU-Xpose-Multi-person), same set of hyper param-
eters are used.

3. Experiments
3.1. Baselines

MUGL:[8] proposed a variational autoencoder based
method for large scale generation of single and multi-person
actions of variable duration. It uses decoupled modules for
local and global trajectory modeling, where the local pose
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Figure 2: Figure shows comparison of class-wise mean sequence length of the real and generated sequences. DSAG is able

to capture the non-identical duration of different classes.

Method ‘ max # actors ‘ # classes ‘ Variable Duration ‘ Joint config ‘ # Datasets ‘ # Parameters (K) ‘ Avg. Inference Time
VAE-LSTM[9] 1 1 X B 1 1001 — 1466 0.21 —0.22
SA-GCNJ[23] 1 10 X B 2 18528 — 63101 52.92 — 289.41
action2motion|[7] 1 12 -13 X B 3 462 — 556 46.32 — 53.60
ACTOR[17] 1 12 — 40 v B 3 14918 — 14981 5.94 — 5.96
Kinetic-GAN[5] 1 10 — 120 X B 2 3643 — 4336 9.90 —9.94
MUGL[8] 2 120 v B 1 108 — 3906 0.31 — 0.56

‘ 2 ‘ 12 - 120 ‘ v ‘ B+ F ‘ 4 ‘ 349 — 2863 ‘ 0.45—0.98

Table 2: A comparative summary of the baseline approaches and . B, F' in Joint Config column represent Body and Finger
Joints respectively. Since # Parameters and average inference time vary across different datasets, a range of values is reported.

Avg. Inference time is in milliseconds.

sequence is represented using joint rotation and the global
trajectory is represented using 3D positions of the root joint
in each timestep. Even though this method is able to scale
upto a large number of action classes, it fails to generate full
body(including finger joints). This method doesn’t general-
ize on other datasets.

Kinetic-GAN[5]: proposes a GCN based conditional-GAN
framework for fixed duration large scale action generation
across 94 action classes of NTU dataset [14]. However,
Kinetic-GAN is trained only on single person NTU-RGBD
Kinect sequences with 3D joint positions to represent pose.

For two person classes, only one person is considered. Un-
like our method, it uses 3D joint position to represent hu-
man pose tree, which fails to ensure consistent bone length
through the action sequence. Since this method is highly
sensitive to hyper-parameters, it fails to converge when
trained on other datasets.

ACTOR:[17] generates variable duration, single-person
mesh-based motion sequences conditioned on class label
using a conditional variational autoencoder along with a
transformer-based framework. To construct the baselines
for single person generation, we trained the model on sin-
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Figure 3: Configuration of different skeleton structures DSAG is trained on (a) indicates the skeleton structure followed
by NTU-VIBE, UESTC and HumanActs12 datasets. (b) indicates the skeleton structure followed by NTU-Xpose and
HumanActs12-Xpose datasets. (c) shows the structure of Human3.6m dataet.

gle person subset of NTU datasets (NTU-VIBE-Single-
person, NTU-Xpose-Single-person) and HumanActl2-
Xpose datasets. For NTU-VIBE-Single-person we used the
same settings as defined for their experiements on NTU
dataset, except changing the number of classes. For NTU-
Expose-Single-person and HumanAct12-Xpose we replace
SMPL with SMPL-X [16] to generate finger motion. For
HumanAct12 and UESTC, we used pretrained ACTOR
models available as baseline. The method is confined to
a small number of action classes. Since this method re-
quires SMPL mesh parameters to optimize, we were unable
to train it on Human3.6m dataset since Human3.6m dataset
doesn’t contain mesh parameters.

SA-GCN:[23] proposes a self-attention based graph convo-
lution backed conditional GAN based method conditioned
on class labels. We modify SA-GCN, originally trained on
2D action sequences, for our 3D generative setting. But, this
method is designed for generating human action sequence
in 2-D coordinate space. Moreover when this method is
trained to generate samples on 3-D coordinate space, the
generated samples orientation rotate randomly in 3-D space.
Another drawback is that it covers a small set action classes.
This model fails to generate good quality sample when
number of action classes are increased, especially the ac-
tion class which involve leg movement.
Action2motion:[7] uses conditional VAE to generate hu-

man motion sequence from action class. Similar to our ap-
proach, action2motion represents the pose tree via 3D ro-
tation. This method is also meant for small number of ac-
tion classes (13 classes) and fails to generate good quality
samples beyond that. This method fails to scale to a large
number of action classes.

VAE-LSTM:[9] uses a LSTM based VAE to generate hu-
man action sequences modulated by control signals. For
constructing our baseline, we modify VAE-LSTM to incor-
porate class conditioning instead of control signal. This
method works well for smaller datasets containing human
locomotion activities, controlled by control signals. This
method fails to model activities at large scale.

3.2. Metrics

To quantify the naturalness, realism and diversity of gen-
erated sequences, we show results using five popular gener-
ative quality metrics. For all the metrics, smaller the score,
better the generative quality.

Direct sample space metrics: Maximum Mean Discrep-
ancy (MMD) captures similarity between generated and test
set sample distributions [19, 23, 1, 8]. Since it is directly
computed on the 3D joint space, there is no need of an ex-
ternal feature classifier. We employ two variants of MMD
— MMD-A and MMD-S for evaluation. The base similar-
ity is measured on a per-timestep basis for MMD-A and on



a per-sequence basis for MMD-S. Empirically, these direct
sample space metrics have been found to correlate better
with generation quality [8].

e MMD-A: For MMD-A, the base similarity is mea-
sured on a per-timestep basis for sequence pairs g, e
sampled from generated set G and test set . Let
g¢ € R7*3 and e, € R7*3 represent the ¢-th timestep
poses of the sampled pair and having same action
class. The base similarity (MMD-A) is computed as
K(gt,g9¢) + K(et,er) — 2K(ge, er) where K is a sim-
ilarity kernel. In particular, we employ the RBF ker-
nel [2].

e MMD-S: Unlike MMD-A, MMD-S is computed on
the whole sequence. Let, g,e be sequences chosen
from generated set G and test set £, where g,e €
RTX7x3  We flatten g, e to get a vector representa-
tion of the whole sequence. MMD-S is computed as
K(g,9) + K(e,e) — 2K(g, e).

Feature space metrics: These include Fréchet Inception
Distance (FID) [10], Diversity Score (DS) [7] and Multi-
modality Score (MS) [7]. These metrics use feature repre-
sentations obtained from a pretrained skeleton action clas-
sifier. Despite their popularity, these approaches often cor-
relate poorly with generation quality since the base clas-
sifier involves pose distorting preprocessing during feature
extraction which affects representation quality. To avoid
this issue, we use CTR-GCN [3], a state-of-the-art classi-
fier which does not perform any such preprocessing. Details
about training CTR-GCN can be found in Sec. 3.4

Fréchet Inception Distance (FID) [10]: FID measures
the quality of generation by comparing feature distribution
of generated samples and ground truth samples (extracted
from a pretrained classifier). FID score is given as:

FID = ||y — piglla + tr(S, + X5 — 2(5,55)2)  (2)

where (1., s indicate the mean of ground truth and gener-
ated feature vectors. X,., X, indicate covariance matrix of
ground truth and generated feature vector.

Diversity Score (DS) [7]: This measures the variance of
the generated samples across all the action classes. From
a set of randomly generated samples from multiple action
classes, two subsets of the same size are sampled. Their re-
spective motion feature representations {vy, va, ..., v, } and
{91, 02, ..., U, } are obtained. The diversity of the generated
motion is defined as:

1 < .
DS:E;Hvi—vng (3)

Following protocol of Action2motion[7], diversity score
is deemed better if the score for the generated samples is
closer the score on the test set. Instead of separately show-
ing both the values we report the absolute difference be-
tween the generated and ground truth diversity scores.

Multimodality Score (MS) [7]: Unlike Diversity Score,
Multimodality Score calculates variance of generated sam-
ples within a reference action class. For c-th action (1 <
¢ < (), we create two generated sample subsets of
size n.. The feature representations for these two sets
{Ve1s ey Ven, } and {0 1, ..., e n, } are obtained. The MS
score is defined as:

c

MS = oi% SOS e — desllo @
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For Multimodality score we follow the same protocol as that
for Diversity score.

3.3. Drawbacks of using ST-GCN

Previous methods [7, 17] use ST-GCN[22] which in-
volves a pose distorting preprocessing step. Each subject is
translated such that the root joint of the first origin is glued
to origin. Hip and spine joints are aligned to y-axis and
shoulder joints are aligned to x-axis is translated to origin
and the remaining person’s are transformed

As pointed out by MUGL[8]. This step leads to follow-
ing drawbacks:

e Locomotion (e.g. ‘walking towards®, ‘walking apart®)
and multi-person interaction (e.g. ‘kicking‘) classes
are distorted.

e Using only shoulder and hip joints does not consis-
tently provide the desired orientation normalisation.

Removing the preprocessing seems a possible solution.
However, MUGL[8] showed a significant drop (20%) in
classifier performance, making the resulting feature repre-
sentations unreliable. Please view videos in Supplementary
folder Videos/Effect-of-gcn—-classifier—
preprocessing to better understand the visual effect of
classifier preprocessing.

3.4. CTR-GCN Implementation

To overcome the above mentioned limitations we used
CTR-GCN [3], state of the art skeleton based action recog-
nition model to calculate feature space based metrics. CTR-
GCN was preferred as it doesn’t require any additional pre-
processing of data.

We updated the provided code with the required skele-
ton structure and hyperparameters in the config file as per
the dataset being used. The feature vectors correspond to
the resultant vector formed before passing to the fully con-
nected layer. We constructed 4 models of CTR-GCN,

o NTU-VIBE-Single-Person: Skeleton structure used
here is of SMPL [15] which is trained on 94 single per-
son classes of NTU VIBE dataset. We used this model
to extract feature vectors of the generated samples by
all the baseline models trained on NTU-VIBE-Single-
person, HumanAct12 [24] and UESTC [12] datasets.



e NTU-VIBE-Multi-person: This is similar as above
but is trained on all 120 classes of NTU VIBE dataset
with the hyperparameter, “num_person” set as 2. We
used this model to extract features of the generated
samples by all the baseline models trained on NTU-
VIBE-Mutli-person dataset.

o NTU-Xpose-Single-person: Skeleton structure used
here is of SMPL-H [18] which is trained on 94 sin-
gle person classes of NTU EXPOSE dataset. We used
this model to extract features of the generated samples
by all the baseline models trained on NTU-Expose-
Single-person and HumanAct12-Expose dataset.

o NTU-Xpose-Multi-person: This is similar as above
but is trained on all 120 classes of NTU EXPOSE
dataset with the hyperparameter, “num_person” set as
2. We used this model to extract features of the gen-
erated samples by all the baseline models trained on
NTU-Expose-Mutli-person dataset.

e Human3.6m: Initially we trained CTR-GCN on Hu-
man3.6 [11] dataset. But due to very high within class
diversity, the accuracy on test was low (approx. 60%).
Leading to exploding feature based evaluation met-
rics. Hence for consistancy and completeness we used
CTR-GCN trained on NTU-VIBE-Single-person. To
evaluate on methods trained on Human3.6 dataset we
choose the common subset of joints between SMPL
skeleton and Human3.6 skeleton (See Fig. 3). But due
to domain shift, we notice exploding scores.

3.5. Qualitative Analysis

Additional qualitative results for HumanActsl2-
Xpose and UESTC can be found in Figure 4
and Figure 5 respectively. Additionally videos
comparing  with  baselines can be found in
Videos/Comparisons—-with-baselines—-and-
ground-truth/<dataset>

Examples showcasing generation diversity can be
viewed at Videos/Diverse—-samples in Supplemen-
tary. Our qualitative and quantitative results show that
DSAG is able to generate diverse samples for all datasets.
For UESTC, although DSAG is able to generate diverse
samples, it outperforms all methods except ACTOR[17].
Similar trend can be seen in Diversity Score in Table 3 of
main paper.

3.6. Quantitative Analysis

Details of Quantitative analysis can be found

in Table 3 in the main paper. Additionally,
class-wise visualization of evaluation metrics on
each method across datasets can be found in

Code/Class—-wise-Metric—-Visualisation.

4. Application - Motion Prediction

Although is designed for action generation, we re-
purpose the model for long-term motion prediction. Motion
prediction is a related task where in a small initial action
sequence is used to condition the generation of the full ver-
sion. We use Human3.6M dataset for this experiment. We
train the autoencoder version of and finetune the resulting
model via a curriculum learning schedule for motion pre-
diction. Following standard protocol [20], we conduct eval-
uation for prediction of 560 milliseconds (14 frames) and
1000 milliseconds (25 frames) with mean rotation error as
the metric. The results in Table 3 show that we outperform
all the baselines on average for long-term motion predic-
tion.

Problem Formulation: For this task, the objective is to
predict a sequence of ‘future’ frames Xy of length ¢ given
an initial frame sequence X of length ¢; as input.

Overview: We follow a seq2seq approach where the lo-
cal and global body encoder modules take previous frames
A as input to create local body encoding f; and global body
encoding f,;. These encoding are concatenated and passed
to the decoder to predict a set of future frames X . Note no
class label conditioning is required in our setup. We also do
not use hand modules since finger motion is not available.

Optimization: Since it is not a generative model, we
utilize only the reconstruction losses:

L= ﬁfggal + /\global'crgelccybal )
Where L} . loss is a combination of losses on local
body component 6D space (Lgp) and 3D space (L3p), i.e.
Ly . = XépLeép + AspLsap. Aeép and Azp are hyperpa-
rameters. We use the same set of hyperparameters which
can be found in Table 1.

Training: To initialize the weights, we first pretrain an

autoencoder version of to reconstruct input human motion
sequence, i.e. to reconstruct X; of length ¢;. During train-
ing the reconstruction loss is computed over the predicted
and future ground truth sequences X’y. During the train-
ing we use curriculum learning, where initially we predict
a b frames and gradually increase the number of predicted
frames in multiples of 5. The remaining frames predicted
by the decoder are discarded.
Related Work Among the recent successful approaches,
ConvSeq2Seq [13] uses CNNs to capture long term spatial
and temporal correlations. LTD [21] uses a DCT (discrete
fourier transform) representation to encode pose. HRI [20]
uses an attention based feed-forward network to capture the
repetitive nature of human actions.

Evaluation: Following standard protocol [20], we con-
duct evaluation for prediction of 560 milliseconds (t; = 14
frames) and 1000 milliseconds (¢ ; = 25 frames) with mean
rotation error as the metric. The results in Table 3 of main
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paper show that we outperform all the baselines on average
for long-term motion prediction, which clearly shows the
effectiveness of on long term motion prediction.

Fig. 6 shows qualitative results on predicting 1000ms
across various classes of H3.6 dataset. Even though DSAG
is designed for generation, the close overlap between be-
tween the predicted and ground truth sequences shows that
it can be adapted for other related tasks such as prediction.

5. Failure Cases

Failure cases of our model can be found at:
Videos/Failure—-Cases. Our model generate
poor quality sequences for classes with unreliable training
data. This is particularly the case for actions involving
close interaction between two people which occludes the
perceived pose structure (e.g. “Hugging”). Action classes
with poor hand joint estimation, e.g. “Make Victory Sign”,
also have poor quality generated sequences. DSAG also

suffers from the foot sliding problem, i.e. sometimes
the movement of the foot joints are not in sync with the
movement in the global trajectory. It happens due to the
absence of any dedicated method to handle explicitly, such
as, foot contact loss.

6. Potential Social Impact

Although pose based skeleton representation doesn’t
provide any appearance based identifiable information
about the actor performing an activity. The trademark of
iconic activities like ‘Gangnam style* should not infringed
and should be credited appropriately. Future works which
build upon our approach should keep cultural nuances of
how gestures and actions are interpreted while choosing to
expand the action vocabulary. Another undeniable fact is
to acknowledge the harmful environmental effects of train-
ing such large scale deep-learning models. Lastly, people
should avoid adopting this method to generate fake data for



‘ Walking Eating Smoking Discussions Directions greeting Phoning Posing
Model | 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 1000
convSeq2Seq[13] | 0.87  1.00 | 0.86 1.24 | 0.98 1.67 | 142 203 | 1.00 144 | 1.73 1.90 | 1.66  2.05 1.95  2.63
LTD-10-25[21] | 0.65 0.67 | 0.76 112 | 0.87 157 | 1.33 170 | 0.84 1.26 | 143 159 | 145 165 1.62 242
LTD-10-10[21] | 0.69 0.77 | 0.76 1.10 | 0.88 158 | 1.27 175 | 0.90 135 | 147 159 | 149 174 | 1.61 255
HRI[20] | 0.59 0.64 | 0.74 1.10 | 0.86 158 | 1.29 163 | 0.81 127 | 147 157 | 141 168 | 1.60 2.32
| .16 1.66 | 0.86 1.22 | 0.82 1.02 | 110 1.34| 090 1.11| 148 1.83 | 096 120 | 1.65 281 |
‘ Purchases Sitting Sitting Down  Taking Photo Waiting Walking Dog ~ Walking Together Average
Model | 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 1000 |
convSeq2Seq[13] | 1.68  2.50 | 1.31 1.72 | 145 198 | 1.09 132 | 1.68 245 | 1.73 204 | 0.82  1.29 135 1.82
LTD-10-25[21] | 1.42 221 | 1.08 1.45 | 1.26 1.87 | 0.85 1.06 | 1.55 229 | 1.52 184 | 0.70 116 115 1.59
LTD-10-10[21] | 1.47 227 | 112 152 | 1.17 167 | 0.81 105 | 1.57 237 | 1.58 186 | 0.65 116 | 1.16 1.62
HRI[20] | 143 222 | 1.16 155 | 1.18 170 | 0.82 1.08 | 1.54 230 | 1.57 182 | 0.63 116 | 1.14 1.57
| 091 108|130 161|083 119|091 170 | 0.88 211 | 1.28 1.75| 1.17 131 | 113 1.41 |

Table 3: Comparisons for long-term motion prediction on 15 action categories of Human3.6M dataset. We show quantitative
comparison on prediction of 560 millisecond(14 frames) and 1000 millisecond(25 frames).

unlawful use.
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